Abstract
Modern society relies heavily on the Global Navigation Satellite System (GNSS) technology for applications such as satellite communication, navigation, and positioning on the ground and/or aviation in the troposphere/stratosphere. However, ionospheric scintillations can severely impact GNSS systems and their related applications. In this study, a global empirical ionospheric scintillation model is constructed with S4-index data obtained by the FORMOSAT-3/COSMIC (F3/C) satellites during 2007–2014 (hereafter referred to as the F3CGS4 model). This model describes the S4-index as a function of local time, day of year, dip-latitude, and solar activity using the index PF10.7. The model reproduces the F3/C S4-index observations well, and yields good agreement with ground-based reception of satellite signals. This confirms that the constructed model can be used to forecast global L-band scintillations on the ground and in the near surface atmosphere.
Original language | English |
---|---|
Pages (from-to) | 1015-1028 |
Number of pages | 14 |
Journal | Advances in Space Research |
Volume | 60 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2017 Sep 1 |
All Science Journal Classification (ASJC) codes
- Aerospace Engineering
- Astronomy and Astrophysics
- Geophysics
- Atmospheric Science
- Space and Planetary Science
- Earth and Planetary Sciences(all)