Abstract
The benefits of employing ammonia for power generation were experimentally quantified through the development of an electric generator system. This system consisted of a flat-flame burner, a Stirling engine, an AC generator, a charge controller, batteries, and some electric appliances. The fuel employed throughout this study was a mixture of dimethyl ether and ammonia. The system performance was quantified through electric power output, thermal-to-electric efficiency of the system, and multiple emission indices, which facilitated the estimation of combustion efficiency. Under the condition of a value of ammonia concentration of 10 % and heat input of 2000 W, the system generated 31.1 W of electric power. As the ammonia concentration increased to 40 %, the CO2 emissions were decreased by approximately 42 % at the cost of a minor reduction in electric power output of 4 %. The combustion efficiency of the flat-flame burner was between 98.4 and 99.1 %, and the thermal-to-electric efficiency of the system was between 1.45 and 1.7 %. The results demonstrated that ammonia has the potential to phase out carbon-rich fuel (either fossil fuel or sustainable fuel such as dimethyl ether), thus mitigating the CO2 emission that worsens the global warming problem.
Original language | English |
---|---|
Article number | 134224 |
Journal | Energy |
Volume | 314 |
DOIs | |
Publication status | Published - 2025 Jan 1 |
All Science Journal Classification (ASJC) codes
- Civil and Structural Engineering
- Modelling and Simulation
- Renewable Energy, Sustainability and the Environment
- Building and Construction
- Fuel Technology
- Energy Engineering and Power Technology
- Pollution
- Mechanical Engineering
- General Energy
- Management, Monitoring, Policy and Law
- Industrial and Manufacturing Engineering
- Electrical and Electronic Engineering