An experimental and theoretical study of wave damping due to the elastic coating of the sea surface

Igor Shugan, Ray Yeng Yang, Yang Yih Chen

Research output: Contribution to journalArticlepeer-review

Abstract

Flexible plates or membranes located on the sea surface can be effective for attenuation waves approaching the beach. The most efficient structures should be found through comprehensive research using developed experiments and theory. Our experimental work was focused on the wave propagation and attenuation passing through floating elastic structures. The experiments were conducted at the wave flume of Tainan Hydraulics Laboratory, National Cheng Kung University, Taiwan. The experiment mainly analyzes the reflection coefficient, transmission coefficient and energy loss of the regular wave of intermediate water depth after passing through the elastic structure under different wave steepness and other different wave conditions. Our experiments also explore the comparison of energy dissipation effects and the differences in motion characteristics between different elastic plates and different plate fixing methods. Three elastic materials were tested in the experiments: Latex, cool cotton and polyvinyl chloride (PVC). A model of a thin elastic plate covering the sea surface was used to evaluate the effectiveness of the structure of the wave barrier. The results of experiments carried out in the wave flume were compared with theoretical predictions in a wide range of generated waves.

Original languageEnglish
Article number571
JournalJournal of Marine Science and Engineering
Volume8
Issue number8
DOIs
Publication statusPublished - 2020 Aug

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Water Science and Technology
  • Ocean Engineering

Fingerprint Dive into the research topics of 'An experimental and theoretical study of wave damping due to the elastic coating of the sea surface'. Together they form a unique fingerprint.

Cite this