An In Vitro System Mimics the Intestinal Microbiota of Striped Beakfish (Oplegnathus fasciatus) and Inhibits Vibrio alginolyticus by Limosilactobacillus reuteri-Derived Extracellular Vesicles

Bao Hong Lee, Yeh Fang Hu, Sofia Priyadarsani Das, Yu Ting Chu, Wei Hsuan Hsu, Fan Hua Nan

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Extracellular vesicles (EVs) are functional substances secreted by microbes and host cells, and it has been discovered that they participate in the interactions between different microorganisms. Our recent findings indicate that Limosilactobacillus reuteri-derived EVs have the potential to improve the intestinal microbiota of Oplegnathus fasciatus fish and inhibit pathogenic bacteria. Previous research has reported that the host intestinal cells play a regulatory role in the intestinal microbiota. This suggested that to investigate the mechanisms through which L. reuteri-derived EVs regulate the intestinal microbiota, a system that excludes interference from host intestinal cells should be established. In this study, an in vitro cultured intestinal bacteria system, without host factors, was used to simulate the intestinal microbiota of O. fasciatus fish. After adding L. reuteri-derived EVs to the system, the changes in the microbiota were analyzed. The results showed that L. reuteri-derived EVs effectively reduced the abundance of Vibrio spp. In the results of the in vitro experiments, it was also observed that L. reuteri-derived EVs have the ability to inhibit Vibrio alginolyticus. We further sequenced the small RNA contained in L. reuteri-derived EVs and found that these small RNAs can interfere with genes (LysR, pirin, MIpA/OmpV, CatB, and aspartate-semialdehyde dehydrogenase) related to the growth of V. alginolyticus. Taken together, the results indicate that in the absence of host involvement, the small RNAs present in L. reuteri-derived EVs have the function of inhibiting pathogenic bacteria and exhibit the potential to regulate the intestinal microbiota.

Original languageEnglish
Article number1792
JournalAnimals
Volume14
Issue number12
DOIs
Publication statusPublished - 2024 Jun

All Science Journal Classification (ASJC) codes

  • Animal Science and Zoology
  • General Veterinary

Cite this