TY - GEN
T1 - An optimal design of magnetostrictive material (MsM) based energy harvester
AU - Hu, Jingzhen
AU - Yuan, Fuh Gwo
AU - Xu, Fujun
AU - Huang, Alex Q.
PY - 2010
Y1 - 2010
N2 - In this study, an optimal vibration-based energy harvesting system using magnetostrictive material (MsM) has been designed to power the Wireless Intelligent Sensor Platform (WISP), developed at North Carolina State University. A linear MsM energy harvesting device has been modeled and optimized to maximize the power output. The effects of number of MsM layers and glue layers, and load matching on the output power of the MsM energy harvester have been analyzed. From the measurement, the open circuit voltage can reach 1.5 V when the MsM cantilever beam operates at the 2nd natural frequency 324 Hz. The AC output power is 0.97 mW, giving power density 279 μW/cm 3. Since the MsM device has low open circuit output voltage characteristics, a full-wave quadrupler has been designed to boost the rectified output voltage. To deliver the maximum output power to the load, a complex conjugate impedance matching between the load and the MsM device has been implemented using a discontinuous conduction mode (DCM) buck-boost converter. The maximum output power after the voltage quadrupler is now 705 μW and power density reduces to 202.4 μW/cm3, which is comparable to the piezoelectric energy harvesters given in the literature. The output power delivered to a lithium rechargeable battery is around 630 μW, independent of the load resistance.
AB - In this study, an optimal vibration-based energy harvesting system using magnetostrictive material (MsM) has been designed to power the Wireless Intelligent Sensor Platform (WISP), developed at North Carolina State University. A linear MsM energy harvesting device has been modeled and optimized to maximize the power output. The effects of number of MsM layers and glue layers, and load matching on the output power of the MsM energy harvester have been analyzed. From the measurement, the open circuit voltage can reach 1.5 V when the MsM cantilever beam operates at the 2nd natural frequency 324 Hz. The AC output power is 0.97 mW, giving power density 279 μW/cm 3. Since the MsM device has low open circuit output voltage characteristics, a full-wave quadrupler has been designed to boost the rectified output voltage. To deliver the maximum output power to the load, a complex conjugate impedance matching between the load and the MsM device has been implemented using a discontinuous conduction mode (DCM) buck-boost converter. The maximum output power after the voltage quadrupler is now 705 μW and power density reduces to 202.4 μW/cm3, which is comparable to the piezoelectric energy harvesters given in the literature. The output power delivered to a lithium rechargeable battery is around 630 μW, independent of the load resistance.
UR - http://www.scopus.com/inward/record.url?scp=77953504752&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77953504752&partnerID=8YFLogxK
U2 - 10.1117/12.847623
DO - 10.1117/12.847623
M3 - Conference contribution
AN - SCOPUS:77953504752
SN - 9780819480620
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010
T2 - Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010
Y2 - 8 March 2010 through 11 March 2010
ER -