An optimum design for a natural convection pin fin array with orientation consideration

Cheng Hung Huang, Yi Ting Wu

Research output: Contribution to journalArticlepeer-review

Abstract

A three-dimensional optimum pin fin heat sink (PFHS) design problem is investigated numerically using the Levenberg-Marquardt Method (LMM) and a commercial package, CFD-ACE+, and experimentally under natural convection conditions and the fixed pin fin material constraint. The purpose is to design the optimal pin heights, pin diameters and orientation angles of the PFHS and thus minimize the thermal resistance Rth and enhance the heat dissipation performance of the system. The radiation effect between the PFHS and air is considered in this work. It indicates that when considering only the perimeter pin fins and neglecting the interior pin fins, the optimal heat dissipation performance is obtained. The novelty of this work lies in that a functional form of a tapered pin is established and its optimal design variables are then estimated, which has not been examined previously. Finally, experimental verifications were conducted on the fabricated heat sinks; the temperatures measured by the thermal camera are in good agreement with the numerical temperatures on those heat sinks, since the maximum relative error is less than 3.68% and the maximum discrepancy between computed and measured Rth is smaller than 1.79%. Result reveals that the tapered pin heat sink (design D) with a 66° orientation angle has the lowest thermal resistance among all designs, and its thermal resistance is 18.7% smaller than that of a traditional PFHS, showing the validity of this design algorithm in estimating the optimal variables of the natural convection PFHSs.

Original languageEnglish
Article number116633
JournalApplied Thermal Engineering
Volume188
DOIs
Publication statusPublished - 2021 Apr

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'An optimum design for a natural convection pin fin array with orientation consideration'. Together they form a unique fingerprint.

Cite this