Abstract
In this paper, we propose a cross routing and MAC QoS protocol design, named Signal-to-Interference-plus-Noise-Ratio and Quality-of-Service (SINR-QoS), for wireless ad hoc networks. SINR-QoS is spatial-reuse time division multiple access (STDMA)-based. Unlike most of the conventional approaches, SINR-QoS manages the spatial reuse based on SINR. When a data flow with end-to-end throughput requirement arrives, the routing part of SINR-QoS, called SINR-QoS-routing (SQ-routing), determines a route, and assigns STDMA slots, transmission rate, and transmission power for each link on the route. The assignment is SINR-based, and thus requires some SINR-related information to coordinate the co-channel interference. Hence, the MAC part of SINR-QoS, called SINR-QoS-MAC (SQ-MAC), is proposed for nodes to acquire and update the SINR-related information. With the specific design of SQ-MAC, SINR-QoS can precisely manage the spatial reuse without explicit channel-gain exchange between interfering neighbors. Simulation results show SINR-QoS outperforms the existing QoS approaches in both total end-to-end throughput and reliability.
Original language | English |
---|---|
Pages (from-to) | 1141-1154 |
Number of pages | 14 |
Journal | Wireless Networks |
Volume | 21 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2015 May 1 |
All Science Journal Classification (ASJC) codes
- Information Systems
- Computer Networks and Communications
- Electrical and Electronic Engineering