Analyses of crystal forms in syndiotactic polystyrene intercalated with layered nano-clays

Arup K. Ghosh, E. M. Woo

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)


A mixed polymorphic morphology of intercalated/exfoliated structure was observed in syndiotactic polystyrene (sPS)/clay nano-composites, which were successfully prepared by solution intercalation technique using 1,1,2,2-tetrachloroethane (TCE) as a solvent. Furthermore, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses were used to examine the effect of montmorillonite clays (MMT, in pristine or organo-modified forms) in isothermally melt-crystallized sPS at several available crystallization temperatures (Tc) in a competitive environment of coexisting α- and β-crystals. A significant change in polymorphism of sPS was observed by the inclusion of different clays and the temperature regime of the α-crystal formation in sPS was found to increase considerably up to 250°C by the presence of the organo-clay. Pristine clay (Na-MMT) was found to induce the β-crystal of sPS at all Tc's studied in this work. The overall thermodynamics of crystallization remained unchanged as the β-phases were found in major proportion at higher temperature of crystallization (∼260°C), irrespective of the nature of the clays. The dispersibility of the clays in sPS matrix is assumed to play the pivotal role in modifying the crystalline structures, which was further corroborated by the polarized optical microscopy (POM). The spherulitic morphology clearly indicates differences in crystallites as affected by the nano-clays. Incorporation of organo-clay with nanoscale dispersibility through the intercalation of sPS molecules into the clay galleries was found to promote rapid formation of α-forms, which develops into spherulites of smaller dimension as compared to those of the β-forms. The alteration in melting behavior of sPS is attributed to the different crystallite structures that lead to formation of different kind of spherulites.

Original languageEnglish
Pages (from-to)4749-4759
Number of pages11
Issue number14
Publication statusPublished - 2004 Jun

All Science Journal Classification (ASJC) codes

  • Organic Chemistry
  • Polymers and Plastics
  • Materials Chemistry


Dive into the research topics of 'Analyses of crystal forms in syndiotactic polystyrene intercalated with layered nano-clays'. Together they form a unique fingerprint.

Cite this