TY - JOUR
T1 - Analysis of microsatellites in the vulnerable orchid gastrodia flavilabella
T2 - The development of microsatellite markers, And cross-species amplification in gastrodia
AU - Tsai, Chi Chu
AU - Wu, Pei Yin
AU - Kuo, Chia Chi
AU - Huang, Min Chun
AU - Yu, Sheng Kun
AU - Hsu, Tsai Wen
AU - Chiang, Tzen Yuh
AU - Chiang, Yu Chung
N1 - Funding Information:
We thank Dr. Xun Gong for their assistance in collecting the Gastrodia elata. This work was supported by grants from the National Science Council, Taiwan (NSC 100-2621-B-110-001-MY3 and NSC 101-2621-B-110-003) to Y.-C. Chiang.
Publisher Copyright:
© 2014 Tsai et al.
PY - 2014
Y1 - 2014
N2 - Background: Gastrodia flabilabella is a mycoheterotrophic orchid that obtains carbohydrates and nutrients from its symbiotic mycorrhizal fungi. The species is an endemic and vulnerable species enlisted in the “A Preliminary Red List of Taiwanese Vascular Plants” according to the IUCN Red List Categories and Criteria Version 3.1. G. flabilabella dwells the underground of broadleaf and coniferous forest with richness litter. Based on herbarium records, this species is distributed in central Taiwan. Twenty eight microsatellite loci were developed in G. flabilabella and were tested for cross-species amplification in additional taxa of G. confusoides, G. elata, and G. javanica. We estimated the genetic variation that is valuable for conservation management and the development of the molecular identification system for G. elata, a traditional Chinese medicine herb. Results: Microsatellite primer sets were developed from G. flabilabella using the modified AFLP and magnetic bead enrichment method. In total, 257 microsatellite loci were obtained from a magnetic bead enrichment SSR library. Of the 28 microsatellite loci, 16 were polymorphic, in which the number of alleles ranged from 2 to 15, with the observed heterozygosity ranging from 0.02 to 1.00. In total, 15, 13, and 7 of the loci were found to be interspecifically amplifiable to G. confusoides, G. elata, and G. javanica, respectively. Conclusions: Amplifiable and transferable microsatellite loci are potentially useful for future studies in investigating intraspecific genetic variation, reconstructing phylogeographic patterns among closely related species, and establishing the standard operating system of molecular identification in Gastrodia.
AB - Background: Gastrodia flabilabella is a mycoheterotrophic orchid that obtains carbohydrates and nutrients from its symbiotic mycorrhizal fungi. The species is an endemic and vulnerable species enlisted in the “A Preliminary Red List of Taiwanese Vascular Plants” according to the IUCN Red List Categories and Criteria Version 3.1. G. flabilabella dwells the underground of broadleaf and coniferous forest with richness litter. Based on herbarium records, this species is distributed in central Taiwan. Twenty eight microsatellite loci were developed in G. flabilabella and were tested for cross-species amplification in additional taxa of G. confusoides, G. elata, and G. javanica. We estimated the genetic variation that is valuable for conservation management and the development of the molecular identification system for G. elata, a traditional Chinese medicine herb. Results: Microsatellite primer sets were developed from G. flabilabella using the modified AFLP and magnetic bead enrichment method. In total, 257 microsatellite loci were obtained from a magnetic bead enrichment SSR library. Of the 28 microsatellite loci, 16 were polymorphic, in which the number of alleles ranged from 2 to 15, with the observed heterozygosity ranging from 0.02 to 1.00. In total, 15, 13, and 7 of the loci were found to be interspecifically amplifiable to G. confusoides, G. elata, and G. javanica, respectively. Conclusions: Amplifiable and transferable microsatellite loci are potentially useful for future studies in investigating intraspecific genetic variation, reconstructing phylogeographic patterns among closely related species, and establishing the standard operating system of molecular identification in Gastrodia.
UR - http://www.scopus.com/inward/record.url?scp=84921926076&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84921926076&partnerID=8YFLogxK
U2 - 10.1186/s40529-014-0072-4
DO - 10.1186/s40529-014-0072-4
M3 - Article
AN - SCOPUS:84921926076
SN - 1817-406X
VL - 55
SP - 1
EP - 9
JO - Botanical Studies
JF - Botanical Studies
IS - 1
M1 - 72
ER -