Analysis of whirl speeds of rotor-bearing systems with internal damping by C0 finite elements

Lien Wen Chen, Der Ming Ku

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)


A C0, three-node isoparametric finite element model is developed to study the whirl speeds of a rotor-bearing system with both internal viscous and hysteretic damping. The equations of motion for such a system are formulated based on the Timoshenko beam theory. In addition to the effects of translational and rotatory inertia, gyroscopic moments, the combined effects of transverse shear deformation and internal damping as well as the effect of the centrifugal force, which arises from the rotating shaft mass, are also incorporated into the mathematical model. Results of forward and backward whirl speed are presented and compared with other published works. It is shown that both the transverse shear derformation and the centrifugal force have the influence of lowering the whirl speeds. The good convergence of the present finite element model is also demonstrated with the numerical example given.

Original languageEnglish
Pages (from-to)169-176
Number of pages8
JournalFinite Elements in Analysis and Design
Issue number2
Publication statusPublished - 1991 Jun

All Science Journal Classification (ASJC) codes

  • Analysis
  • Engineering(all)
  • Computer Graphics and Computer-Aided Design
  • Applied Mathematics


Dive into the research topics of 'Analysis of whirl speeds of rotor-bearing systems with internal damping by C<sup>0</sup> finite elements'. Together they form a unique fingerprint.

Cite this