Animating streamlines with Repeated Asymmetric Patterns for steady flow visualization

Chih Kuo Yeh, Zhanping Liu, Tong Yee Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Animation provides intuitive cueing for revealing essential spatial-temporal features of data in scientific visualization. This paper explores the design of Repeated Asymmetric Patterns (RAPs) in animating evenly-spaced color-mapped streamlines for dense accurate visualization of complex steady flows. We present a smooth cyclic variable-speed RAP animation model that performs velocity (magnitude) integral luminance transition on streamlines. This model is extended with inter-streamline synchronization in luminance varying along the tangential direction to emulate orthogonal advancing waves from a geometry-based flow representation, and then with evenly-spaced hue differing in the orthogonal direction to construct tangential flow streaks. To weave these two mutually dual sets of patterns, we propose an energy-decreasing strategy that adopts an iterative yet efficient procedure for determining the luminance phase and hue of each streamline in HSL color space. We also employ adaptive luminance interleaving in the direction perpendicular to the flow to increase the contrast between streamlines.

Original languageEnglish
Title of host publicationProceedings of SPIE-IS and T Electronic Imaging - Visualization and Data Analysis 2012
DOIs
Publication statusPublished - 2012 Feb 16
EventVisualization and Data Analysis 2012 - Burlingame, CA, United States
Duration: 2012 Jan 232012 Jan 25

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume8294
ISSN (Print)0277-786X

Other

OtherVisualization and Data Analysis 2012
CountryUnited States
CityBurlingame, CA
Period12-01-2312-01-25

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Animating streamlines with Repeated Asymmetric Patterns for steady flow visualization'. Together they form a unique fingerprint.

Cite this