TY - JOUR
T1 - Anodization of nanoporous alumina on impurity-induced hemisphere curved surface of aluminum at room temperature
AU - Chung, Chen Kuei
AU - Liao, Ming Wei
AU - Lee, Chun Te
AU - Chang, Hao Chin
N1 - Funding Information:
This work is partially sponsored by the National Science Council under contract number NSC99-2221-E-006-032-MY3. We also would like to thank the Center for Micro/Nano Science and Technology of the National Cheng Kung University, National Nano Device Laboratories (NDL), and National Center for High-Performance Computing (NCHC) for the access of the process and analysis equipment.
PY - 2011
Y1 - 2011
N2 - Nanoporous alumina which was produced by a conventional direct current anodization [DCA] process at low temperatures has received much attention in various applications such as nanomaterial synthesis, sensors, and photonics. In this article, we employed a newly developed hybrid pulse anodization [HPA] method to fabricate the nanoporous alumina on a flat and curved surface of an aluminum [Al] foil at room temperature [RT]. We fabricate the nanopores to grow on a hemisphere curved surface and characterize their behavior along the normal vectors of the hemisphere curve. In a conventional DCA approach, the structures of branched nanopores were grown on a photolithography-and-etched low-curvature curved surface with large interpore distances. However, a highcurvature hemisphere curved surface can be obtained by the HPA technique. Such a curved surface by HPA is intrinsically induced by the high-resistivity impurities in the aluminum foil and leads to branching and bending of nanopore growth via the electric field mechanism rather than the interpore distance in conventional approaches. It is noted that by the HPA technique, the Joule heat during the RT process has been significantly suppressed globally on the material, and nanopores have been grown along the normal vectors of a hemisphere curve. The curvature is much larger than that in other literatures due to different fabrication methods. In theory, the number of nanopores on the hemisphere surface is two times of the conventional flat plane, which is potentially useful for photocatalyst or other applications. PACS: 81.05.Rm; 81.07.-b; 82.45.Cc.
AB - Nanoporous alumina which was produced by a conventional direct current anodization [DCA] process at low temperatures has received much attention in various applications such as nanomaterial synthesis, sensors, and photonics. In this article, we employed a newly developed hybrid pulse anodization [HPA] method to fabricate the nanoporous alumina on a flat and curved surface of an aluminum [Al] foil at room temperature [RT]. We fabricate the nanopores to grow on a hemisphere curved surface and characterize their behavior along the normal vectors of the hemisphere curve. In a conventional DCA approach, the structures of branched nanopores were grown on a photolithography-and-etched low-curvature curved surface with large interpore distances. However, a highcurvature hemisphere curved surface can be obtained by the HPA technique. Such a curved surface by HPA is intrinsically induced by the high-resistivity impurities in the aluminum foil and leads to branching and bending of nanopore growth via the electric field mechanism rather than the interpore distance in conventional approaches. It is noted that by the HPA technique, the Joule heat during the RT process has been significantly suppressed globally on the material, and nanopores have been grown along the normal vectors of a hemisphere curve. The curvature is much larger than that in other literatures due to different fabrication methods. In theory, the number of nanopores on the hemisphere surface is two times of the conventional flat plane, which is potentially useful for photocatalyst or other applications. PACS: 81.05.Rm; 81.07.-b; 82.45.Cc.
UR - http://www.scopus.com/inward/record.url?scp=84862915170&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862915170&partnerID=8YFLogxK
U2 - 10.1186/1556-276X-6-596
DO - 10.1186/1556-276X-6-596
M3 - Article
C2 - 22087646
AN - SCOPUS:84862915170
VL - 6
SP - 1
EP - 6
JO - Nanoscale Research Letters
JF - Nanoscale Research Letters
SN - 1931-7573
M1 - 596
ER -