Anonymous quantum nonlocality

Yeong Cherng Liang, Florian John Curchod, Joseph Bowles, Nicolas Gisin

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

We investigate the phenomenon of anonymous quantum nonlocality, which refers to the existence of multipartite quantum correlations that are not local in the sense of being Bell-inequality-violating but where the nonlocality is - due to its biseparability with respect to all bipartitions - seemingly nowhere to be found. Such correlations can be produced by the nonlocal collaboration involving definite subset(s) of parties but to an outsider, the identity of these nonlocally correlated parties is completely anonymous. For all n≥3, we present an example of an n-partite quantum correlation exhibiting anonymous nonlocality derived from the n-partite Greenberger-Horne-Zeilinger state. An explicit biseparable decomposition of these correlations is provided for any partitioning of the n parties into two groups. Two applications of these anonymous Greenberger-Horne-Zeilinger correlations in the device-independent setting are discussed: multipartite secret sharing between any two groups of parties and bipartite quantum key distribution that is robust against nearly arbitrary leakage of information.

Original languageEnglish
Article number130401
JournalPhysical review letters
Volume113
Issue number3
DOIs
Publication statusPublished - 2014 Sep 23

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Anonymous quantum nonlocality'. Together they form a unique fingerprint.

Cite this