Application of hybrid laplace transform/finite-difference method to transient heat conduction problems

Hun Taw Chen, Cha’o Kuang Chen

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

A new method involving the combined use of the Laplace transform and the finite-difference method is applicable to two- and three-dimensional linear transient heat conduction problems. The method removes the time dependences from the governing differential equations and boundary conditions by using the Laplace transform and then solves the transformed equations with the finite-difference method. The transformed temperature is inverted by the method of Honig and Hirdes to obtain the result in the physical quantity. The results are compared in tables with exact solutions and other numerical data, and the agreement is found to be good. The method can also be used to calculate the specific nodal temperature at a specific time.

Original languageEnglish
Pages (from-to)343-356
Number of pages14
JournalNumerical Heat Transfer
Volume14
Issue number3
DOIs
Publication statusPublished - 1988 Oct

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint Dive into the research topics of 'Application of hybrid laplace transform/finite-difference method to transient heat conduction problems'. Together they form a unique fingerprint.

Cite this