TY - GEN
T1 - Applications of LIGA on micro-punching process for metallic materials
AU - Pan, C. T.
AU - Cheng, P. J.
AU - Shen, S. C.
AU - Chen, M. F.
AU - Wang, R. Y.
AU - Chou, M. C.
AU - Wu, T. C.
PY - 2006
Y1 - 2006
N2 - This study presents an innovative imprinting method to fabricate IC devices by micro-punch process. Normally, imprinting method is used to imprint plastic materials such as photoresist and polymeric materials. In this study, imprinting process is applied to micro-punch metallic materials directly for IC devices. Fabrications of IC devices with high aspect ratio structures ranging from micrometer to sub-micrometer are described. In this study, to keep the production costs as low as possible, a complete micro-punching process is applied to replicate IC devices. A combination of lithography, extra-hard alloy nickel cobalt (Ni/Co) electroplating process (as a metal imprint mold for punch) and chemical mechanic polishing (CMP) process is used to flat the extra-hard alloy micro-punch head. It is worth noticing that the Ni-Co electroplating process with hardness over Hardness of Vicker (Hv) 560 is developed. With such hardness, it can stand the high pressure and abrasivness to confine the accuracy during micro-punching process. With regard to the electroplating process, Ni-Co is deposited and covered on the photoresist template uniformly by electroplating. The Ni/Co mold is served as master for micro-punching process to replicate the pattern onto polyimide (PI) or copper sheets. Finally, the experimental results are measured and characterized.
AB - This study presents an innovative imprinting method to fabricate IC devices by micro-punch process. Normally, imprinting method is used to imprint plastic materials such as photoresist and polymeric materials. In this study, imprinting process is applied to micro-punch metallic materials directly for IC devices. Fabrications of IC devices with high aspect ratio structures ranging from micrometer to sub-micrometer are described. In this study, to keep the production costs as low as possible, a complete micro-punching process is applied to replicate IC devices. A combination of lithography, extra-hard alloy nickel cobalt (Ni/Co) electroplating process (as a metal imprint mold for punch) and chemical mechanic polishing (CMP) process is used to flat the extra-hard alloy micro-punch head. It is worth noticing that the Ni-Co electroplating process with hardness over Hardness of Vicker (Hv) 560 is developed. With such hardness, it can stand the high pressure and abrasivness to confine the accuracy during micro-punching process. With regard to the electroplating process, Ni-Co is deposited and covered on the photoresist template uniformly by electroplating. The Ni/Co mold is served as master for micro-punching process to replicate the pattern onto polyimide (PI) or copper sheets. Finally, the experimental results are measured and characterized.
UR - http://www.scopus.com/inward/record.url?scp=35348912555&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=35348912555&partnerID=8YFLogxK
U2 - 10.4028/0-87849-990-3.55
DO - 10.4028/0-87849-990-3.55
M3 - Conference contribution
AN - SCOPUS:35348912555
SN - 0878499903
SN - 9780878499908
T3 - Materials Science Forum
SP - 55
EP - 60
BT - Progress on Advanced Manufacture for Micro/Nano Technology 2005 - Proceedings of the 2005 International Conference on Advanced Manufacture
PB - Trans Tech Publications Ltd
T2 - 2005 International Conference on Advanced Manufacture, ICAM2005
Y2 - 28 November 2005 through 2 December 2005
ER -