Abstract
This paper applies fuzzy vector quantization (FVQ) to the modeling of observation-based Discrete Hidden Markov Model (DHMM) and then to improve the speech recognition rate for the Mandarin speech. Vector quantization based on a codebook is a fundamental process to recognize the speech signal by DHMM. A codebook will be first trained by K-means algorithms using Mandarin training speech. Then, based on the trained codebook, the speech features are quantized by the fuzzy sets defined on each vectors of the codebook. Subsequently, the quantized speech features are statistically applied to train the model of DHMM for the speech recognition. All the speech features to be recognized should go through the FVQ based on the fuzzy codebook before being fed into the DHMM model for recognition. Experimental results in this paper shows that the speech recognition rate can be improved by using FVQ algorithm to train the model of DHMM.
Original language | English |
---|---|
Title of host publication | FUZZ 2011 - 2011 IEEE International Conference on Fuzzy Systems - Proceedings |
Pages | 1674-1680 |
Number of pages | 7 |
DOIs | |
Publication status | Published - 2011 |
Event | 2011 IEEE International Conference on Fuzzy Systems, FUZZ 2011 - Taipei, Taiwan Duration: 2011 Jun 27 → 2011 Jun 30 |
Other
Other | 2011 IEEE International Conference on Fuzzy Systems, FUZZ 2011 |
---|---|
Country/Territory | Taiwan |
City | Taipei |
Period | 11-06-27 → 11-06-30 |
All Science Journal Classification (ASJC) codes
- Theoretical Computer Science
- Software
- Artificial Intelligence
- Applied Mathematics