Applying big data for intelligent agriculture-based crop selection analysis

Fan Hsun Tseng, Hsin Hung Cho, Hsin Te Wu

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)


With the growth of the human population comes the constantly rising demand for agricultural products. Nevertheless, as the world experiences climate change, many crops are often damaged by weather conditions.This study utilizes Intelligent Agriculture IoT equipment to monitor the environmental factors on a farm. The collected data underwent 3D cluster analysis to yield analysis of the environmental factors of that farm. The proposed scheme bears the following features: (1) data normalization is achieved via the combination of moving average and average variance; (2) we applied 3D cluster analysis to analyze the relation between environmental factors and subsequently examine the rules of thumb held by the farmers; (3) the system determines whether a selected crop has been placed in the appropriate cluster; and (4) the system sets a critical value in the cluster based on future environments and provides advice on whether a crop is suitable for the farm.We placed Intelligent Agriculture IoT equipment in the farm for monitoring purposes and ran an actual-scenario analysis using the algorithmin our study; results confirm that our proposed scheme is indeed feasible.

Original languageEnglish
Article number2935564
Pages (from-to)116965-116974
Number of pages10
JournalIEEE Access
Publication statusPublished - 2019

All Science Journal Classification (ASJC) codes

  • Computer Science(all)
  • Materials Science(all)
  • Engineering(all)


Dive into the research topics of 'Applying big data for intelligent agriculture-based crop selection analysis'. Together they form a unique fingerprint.

Cite this