Applying sentiment analysis to automatically classify consumer comments concerning marketing 4Cs aspects

Hao Chiang Koong Lin, Tao Hua Wang, Guo Chung Lin, Shu Chen Cheng, Hong Ren Chen, Yueh Min Huang

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


With the rapid development of science and technology, consumers are used to searching online for evaluations before purchasing products. Manufacturers can also utilize such information like users’ usage habits, browsed websites, comments, messages, etc. to formulate marketing strategies suitable for their products. Several researches developed opinion mining on predicting the polarity of consumers’ comments, but few of them were from marketing point of view. In this regards, this study looks to establish an automated way to collect and analyze consumers’ comments in social networks, automatically classify them into marketing 4Cs and non-marketing categories from a large number of consumer comments, and divide the category of marketing 4Cs articles into four types of attribute dimensions to analyze emotional polarity. Based on the marketing theory of 4Cs and LDA topic analysis, this study extracted the characteristic keywords from the collected consumer reviews for corpus classification and sentiment polarity analysis. This study further establishes a feature keyword library for specific fields, hoping to improve the accuracy of sentiment analysis through these keywords, simplify the process of consumers’ searches for product evaluations, and facilitate consumers to search for helpful target information.

Original languageEnglish
Article number106755
JournalApplied Soft Computing Journal
Publication statusPublished - 2020 Dec

All Science Journal Classification (ASJC) codes

  • Software


Dive into the research topics of 'Applying sentiment analysis to automatically classify consumer comments concerning marketing 4Cs aspects'. Together they form a unique fingerprint.

Cite this