Arsenic-induced Aurora-A activation contributes to chromosome instability and tumorigenesis

Chin Han Wu, Ya Shih Tseng, Chao-Chun Yang, Yu Ting Kao, Hamm Ming Sheu, Hsiao-Sheng Liu

Research output: Contribution to journalArticle

Abstract

Arsenic may cause serious environmental pollution and is a serious industrial problem. Depending on the dosage, arsenic may trigger the cells undergoing either proliferation or apoptosis-related cell death. Because of lack of the proper animal model to study arsenic induced tumorigenesis, the accurate risk level of arsenic exposure has not been determined. Arsenic shows genotoxic effect on human beings who uptake water contaminated by arsenic. Chromosome aberration is frequently detected in arsenic exposure-related diseases and is associated with increased oxidative stress and decreased DNA repairing activity, but the underlying mechanism remains elusive.Aurora-A is a mitotic kinase, over-expression of Aurora-A leads to centrosome amplification, chromosomal instability and cell transformation. We revealed that Aurora-A is over-expressed in the skin and bladder cancer patients from blackfoot-disease endemic areas. Our cell line studies reveal that arsenic exposure between 0.5μM and 1μM for 2-7days are able to induce Aurora-A expression and activation based on promoter activity, RNA and protein analysis. Aurora-A overexpression further increases the frequency of unsymmetrical chromosome segregation through centrosome amplification followed by cell population accumulated at S phase in immortalized keratinocyte (HaCaT) and uroepithelial cells (E7). Furthermore, Aurora-A over-expression was sustained for 1-4weeks by chronic treatment of immortalized bladder and skin cells with NaAsO2. Aurora-A promoter methylation and gene amplification was not detected in the long-term arsenic treated E7 cells. Furthermore, the expression level of E2F1 transcription factor (E2F1) is increased in the presence of arsenic, and arsenic-related Aurora-A over-expression is transcriptionally regulated by E2F1. We further demonstrated that overexpression of Aurora-A and mutant Ha-ras or Aurora-A and mutant p53 may act additively to trigger arsenic-related bladder and skin cancer formation, respectively. It indicates that from chromosome instability proceeding to tumorigenesis, the simultaneous action of Aurora-A with activated oncogenic factor or inactivated tumor suppressor is required.In summary, we hypothesize that low concentration (0.5-1. μM) of arsenic-induced E2F1-Aurora-A signaling pathway results in aberrant chromosome distribution during cell mitosis, the abnormal mitotic cells proceed to cancer cells only after acquiring additional tumorigenic factors. Our studies suggest that inhibition of low concentration of arsenic induced Aurora-A expression may provide a new theraputical strategy for the prevention and treatment of arsenic-related cancers.

Original languageEnglish
Pages (from-to)338-341
Number of pages4
JournalJournal of Asian Earth Sciences
Volume77
DOIs
Publication statusPublished - 2013 Nov 5

Fingerprint

aurora
chromosome
arsenic
cancer
skin
amplification
apoptosis
methylation
water uptake
tumor
RNA

All Science Journal Classification (ASJC) codes

  • Geology
  • Earth-Surface Processes

Cite this

Wu, Chin Han ; Tseng, Ya Shih ; Yang, Chao-Chun ; Kao, Yu Ting ; Sheu, Hamm Ming ; Liu, Hsiao-Sheng. / Arsenic-induced Aurora-A activation contributes to chromosome instability and tumorigenesis. In: Journal of Asian Earth Sciences. 2013 ; Vol. 77. pp. 338-341.
@article{3f0d496c0cbf4e948f824f0b223112dc,
title = "Arsenic-induced Aurora-A activation contributes to chromosome instability and tumorigenesis",
abstract = "Arsenic may cause serious environmental pollution and is a serious industrial problem. Depending on the dosage, arsenic may trigger the cells undergoing either proliferation or apoptosis-related cell death. Because of lack of the proper animal model to study arsenic induced tumorigenesis, the accurate risk level of arsenic exposure has not been determined. Arsenic shows genotoxic effect on human beings who uptake water contaminated by arsenic. Chromosome aberration is frequently detected in arsenic exposure-related diseases and is associated with increased oxidative stress and decreased DNA repairing activity, but the underlying mechanism remains elusive.Aurora-A is a mitotic kinase, over-expression of Aurora-A leads to centrosome amplification, chromosomal instability and cell transformation. We revealed that Aurora-A is over-expressed in the skin and bladder cancer patients from blackfoot-disease endemic areas. Our cell line studies reveal that arsenic exposure between 0.5μM and 1μM for 2-7days are able to induce Aurora-A expression and activation based on promoter activity, RNA and protein analysis. Aurora-A overexpression further increases the frequency of unsymmetrical chromosome segregation through centrosome amplification followed by cell population accumulated at S phase in immortalized keratinocyte (HaCaT) and uroepithelial cells (E7). Furthermore, Aurora-A over-expression was sustained for 1-4weeks by chronic treatment of immortalized bladder and skin cells with NaAsO2. Aurora-A promoter methylation and gene amplification was not detected in the long-term arsenic treated E7 cells. Furthermore, the expression level of E2F1 transcription factor (E2F1) is increased in the presence of arsenic, and arsenic-related Aurora-A over-expression is transcriptionally regulated by E2F1. We further demonstrated that overexpression of Aurora-A and mutant Ha-ras or Aurora-A and mutant p53 may act additively to trigger arsenic-related bladder and skin cancer formation, respectively. It indicates that from chromosome instability proceeding to tumorigenesis, the simultaneous action of Aurora-A with activated oncogenic factor or inactivated tumor suppressor is required.In summary, we hypothesize that low concentration (0.5-1. μM) of arsenic-induced E2F1-Aurora-A signaling pathway results in aberrant chromosome distribution during cell mitosis, the abnormal mitotic cells proceed to cancer cells only after acquiring additional tumorigenic factors. Our studies suggest that inhibition of low concentration of arsenic induced Aurora-A expression may provide a new theraputical strategy for the prevention and treatment of arsenic-related cancers.",
author = "Wu, {Chin Han} and Tseng, {Ya Shih} and Chao-Chun Yang and Kao, {Yu Ting} and Sheu, {Hamm Ming} and Hsiao-Sheng Liu",
year = "2013",
month = "11",
day = "5",
doi = "10.1016/j.jseaes.2013.04.032",
language = "English",
volume = "77",
pages = "338--341",
journal = "Journal of Asian Earth Sciences",
issn = "1367-9120",
publisher = "Elsevier Limited",

}

Arsenic-induced Aurora-A activation contributes to chromosome instability and tumorigenesis. / Wu, Chin Han; Tseng, Ya Shih; Yang, Chao-Chun; Kao, Yu Ting; Sheu, Hamm Ming; Liu, Hsiao-Sheng.

In: Journal of Asian Earth Sciences, Vol. 77, 05.11.2013, p. 338-341.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Arsenic-induced Aurora-A activation contributes to chromosome instability and tumorigenesis

AU - Wu, Chin Han

AU - Tseng, Ya Shih

AU - Yang, Chao-Chun

AU - Kao, Yu Ting

AU - Sheu, Hamm Ming

AU - Liu, Hsiao-Sheng

PY - 2013/11/5

Y1 - 2013/11/5

N2 - Arsenic may cause serious environmental pollution and is a serious industrial problem. Depending on the dosage, arsenic may trigger the cells undergoing either proliferation or apoptosis-related cell death. Because of lack of the proper animal model to study arsenic induced tumorigenesis, the accurate risk level of arsenic exposure has not been determined. Arsenic shows genotoxic effect on human beings who uptake water contaminated by arsenic. Chromosome aberration is frequently detected in arsenic exposure-related diseases and is associated with increased oxidative stress and decreased DNA repairing activity, but the underlying mechanism remains elusive.Aurora-A is a mitotic kinase, over-expression of Aurora-A leads to centrosome amplification, chromosomal instability and cell transformation. We revealed that Aurora-A is over-expressed in the skin and bladder cancer patients from blackfoot-disease endemic areas. Our cell line studies reveal that arsenic exposure between 0.5μM and 1μM for 2-7days are able to induce Aurora-A expression and activation based on promoter activity, RNA and protein analysis. Aurora-A overexpression further increases the frequency of unsymmetrical chromosome segregation through centrosome amplification followed by cell population accumulated at S phase in immortalized keratinocyte (HaCaT) and uroepithelial cells (E7). Furthermore, Aurora-A over-expression was sustained for 1-4weeks by chronic treatment of immortalized bladder and skin cells with NaAsO2. Aurora-A promoter methylation and gene amplification was not detected in the long-term arsenic treated E7 cells. Furthermore, the expression level of E2F1 transcription factor (E2F1) is increased in the presence of arsenic, and arsenic-related Aurora-A over-expression is transcriptionally regulated by E2F1. We further demonstrated that overexpression of Aurora-A and mutant Ha-ras or Aurora-A and mutant p53 may act additively to trigger arsenic-related bladder and skin cancer formation, respectively. It indicates that from chromosome instability proceeding to tumorigenesis, the simultaneous action of Aurora-A with activated oncogenic factor or inactivated tumor suppressor is required.In summary, we hypothesize that low concentration (0.5-1. μM) of arsenic-induced E2F1-Aurora-A signaling pathway results in aberrant chromosome distribution during cell mitosis, the abnormal mitotic cells proceed to cancer cells only after acquiring additional tumorigenic factors. Our studies suggest that inhibition of low concentration of arsenic induced Aurora-A expression may provide a new theraputical strategy for the prevention and treatment of arsenic-related cancers.

AB - Arsenic may cause serious environmental pollution and is a serious industrial problem. Depending on the dosage, arsenic may trigger the cells undergoing either proliferation or apoptosis-related cell death. Because of lack of the proper animal model to study arsenic induced tumorigenesis, the accurate risk level of arsenic exposure has not been determined. Arsenic shows genotoxic effect on human beings who uptake water contaminated by arsenic. Chromosome aberration is frequently detected in arsenic exposure-related diseases and is associated with increased oxidative stress and decreased DNA repairing activity, but the underlying mechanism remains elusive.Aurora-A is a mitotic kinase, over-expression of Aurora-A leads to centrosome amplification, chromosomal instability and cell transformation. We revealed that Aurora-A is over-expressed in the skin and bladder cancer patients from blackfoot-disease endemic areas. Our cell line studies reveal that arsenic exposure between 0.5μM and 1μM for 2-7days are able to induce Aurora-A expression and activation based on promoter activity, RNA and protein analysis. Aurora-A overexpression further increases the frequency of unsymmetrical chromosome segregation through centrosome amplification followed by cell population accumulated at S phase in immortalized keratinocyte (HaCaT) and uroepithelial cells (E7). Furthermore, Aurora-A over-expression was sustained for 1-4weeks by chronic treatment of immortalized bladder and skin cells with NaAsO2. Aurora-A promoter methylation and gene amplification was not detected in the long-term arsenic treated E7 cells. Furthermore, the expression level of E2F1 transcription factor (E2F1) is increased in the presence of arsenic, and arsenic-related Aurora-A over-expression is transcriptionally regulated by E2F1. We further demonstrated that overexpression of Aurora-A and mutant Ha-ras or Aurora-A and mutant p53 may act additively to trigger arsenic-related bladder and skin cancer formation, respectively. It indicates that from chromosome instability proceeding to tumorigenesis, the simultaneous action of Aurora-A with activated oncogenic factor or inactivated tumor suppressor is required.In summary, we hypothesize that low concentration (0.5-1. μM) of arsenic-induced E2F1-Aurora-A signaling pathway results in aberrant chromosome distribution during cell mitosis, the abnormal mitotic cells proceed to cancer cells only after acquiring additional tumorigenic factors. Our studies suggest that inhibition of low concentration of arsenic induced Aurora-A expression may provide a new theraputical strategy for the prevention and treatment of arsenic-related cancers.

UR - http://www.scopus.com/inward/record.url?scp=84885469916&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84885469916&partnerID=8YFLogxK

U2 - 10.1016/j.jseaes.2013.04.032

DO - 10.1016/j.jseaes.2013.04.032

M3 - Article

AN - SCOPUS:84885469916

VL - 77

SP - 338

EP - 341

JO - Journal of Asian Earth Sciences

JF - Journal of Asian Earth Sciences

SN - 1367-9120

ER -