TY - JOUR
T1 - Assessing Computational Steps for CLIP-Seq Data Analysis
AU - Liu, Qi
AU - Zhong, Xue
AU - Madison, Blair B.
AU - Rustgi, Anil K.
AU - Shyr, Yu
N1 - Publisher Copyright:
© 2015 Qi Liu et al.
PY - 2015
Y1 - 2015
N2 - RNA-binding protein (RBP) is a key player in regulating gene expression at the posttranscriptional level. CLIP-Seq, with the ability to provide a genome-wide map of protein-RNA interactions, has been increasingly used to decipher RBP-mediated posttranscriptional regulation. Generating highly reliable binding sites from CLIP-Seq requires not only stringent library preparation but also considerable computational efforts. Here we presented a first systematic evaluation of major computational steps for identifying RBP binding sites from CLIP-Seq data, including preprocessing, the choice of control samples, peak normalization, and motif discovery. We found that avoiding PCR amplification artifacts, normalizing to input RNA or mRNAseq, and defining the background model from control samples can reduce the bias introduced by RNA abundance and improve the quality of detected binding sites. Our findings can serve as a general guideline for CLIP experiments design and the comprehensive analysis of CLIP-Seq data.
AB - RNA-binding protein (RBP) is a key player in regulating gene expression at the posttranscriptional level. CLIP-Seq, with the ability to provide a genome-wide map of protein-RNA interactions, has been increasingly used to decipher RBP-mediated posttranscriptional regulation. Generating highly reliable binding sites from CLIP-Seq requires not only stringent library preparation but also considerable computational efforts. Here we presented a first systematic evaluation of major computational steps for identifying RBP binding sites from CLIP-Seq data, including preprocessing, the choice of control samples, peak normalization, and motif discovery. We found that avoiding PCR amplification artifacts, normalizing to input RNA or mRNAseq, and defining the background model from control samples can reduce the bias introduced by RNA abundance and improve the quality of detected binding sites. Our findings can serve as a general guideline for CLIP experiments design and the comprehensive analysis of CLIP-Seq data.
UR - http://www.scopus.com/inward/record.url?scp=84936879926&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84936879926&partnerID=8YFLogxK
U2 - 10.1155/2015/196082
DO - 10.1155/2015/196082
M3 - Article
C2 - 26539468
AN - SCOPUS:84936879926
SN - 2314-6133
VL - 2015
JO - BioMed research international
JF - BioMed research international
M1 - 196082
ER -