Attention-based Graph Convolutional Network for Recommendation System

Chenyuan Feng, Zuozhu Liu, Shaowei Lin, Tony Q.S. Quek

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Citations (Scopus)

Abstract

Matrix completion with rating data and auxiliary information for users and items is a challenging task in recommendation systems. In this paper, we propose an end-to-end architecture named Attention-based Graph Convolutional Network (AGCN) to embed both rating data and auxiliary information in a unified space, and subsequently learn low-rank dense representations via graph convolutional networks and attention layers. Compared to previous work, AGCN reduces computational complexity with Chebyshev polynomial graph filters. The introduced attention layer, which encourages weighing the neighbor information to learn more expressive structural graph representations, can improve the prediction accuracy, and lead to faster and more stable convergence. Experimental results show that our model can perform better and converge faster than current state-of-the-art methods on the real-world MovieLens and Flixster datasets.

Original languageEnglish
Title of host publication2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7560-7564
Number of pages5
ISBN (Electronic)9781479981311
DOIs
Publication statusPublished - 2019 May
Event44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
Duration: 2019 May 122019 May 17

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2019-May
ISSN (Print)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
CountryUnited Kingdom
CityBrighton
Period19-05-1219-05-17

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Attention-based Graph Convolutional Network for Recommendation System'. Together they form a unique fingerprint.

Cite this