Automated classification scheme plus AVM for wafer sawing processes

Yu Ming Hsieh, Rung Lu, Jing Wen Lu, Fan Tien Cheng, Muhammad Adnan

Research output: Contribution to journalArticlepeer-review

Abstract

For the current wafer sawing process, the wafers in the same lot are inspected at the end of the entire process. Therefore, a defect, such as chipping, occurs during processing will only be detected until the end of the process, which is too late and may cause massive defects. If Automatic Virtual Metrology (AVM) is implemented in the wafer sawing process, when chippings occur and are detected, its chipping amount can be predicted by AVM on-line and in real time. Also, AVM's individual similarity index (ISI) analysis can be applied to identify the root cause of chipping. As a result, this root cause can be fixed to avoid generating defects in the subsequent wafers. However, chipping won't happen to all wafers. Since the AVM system deals mainly with the regression problem, it cannot classify whether a wafer is chipped or not. Hence, there is a need to predict wafer-chipping occurrence before applying AVM to the wafer sawing process. To solve the above mentioned problem, the wafer sawing qualitymonitoring is divided into two stages. An Automated Classification Scheme (ACS) based on ensemble learning is developed in Stage I to pre-determine whether a wafer is chipped. If chipping is detected, then proceed to Stage II for the AVM system to predict the chipping amount and identify the root cause that results in this chipping. With the so-calledACS-plus-AVMscheme, theAVMapplication in the wafer sawing process can be realized.

Original languageEnglish
Article number9110778
Pages (from-to)4525-4532
Number of pages8
JournalIEEE Robotics and Automation Letters
Volume5
Issue number3
DOIs
Publication statusPublished - 2020 Jul

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Biomedical Engineering
  • Human-Computer Interaction
  • Mechanical Engineering
  • Computer Vision and Pattern Recognition
  • Computer Science Applications
  • Control and Optimization
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Automated classification scheme plus AVM for wafer sawing processes'. Together they form a unique fingerprint.

Cite this