Automatic and quantitative measurement of collagen gel contraction using model-guided segmentation

Hsin Chen Chen, Tai Hua Yang, Andrew R. Thoreson, Chunfeng Zhao, Peter C. Amadio, Yung Nien Sun, Fong Chin Su, Kai Nan An

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Quantitative measurement of collagen gel contraction plays a critical role in the field of tissue engineering because it provides spatial-temporal assessment (e.g., changes of gel area and diameter during the contraction process) reflecting the cell behavior and tissue material properties. So far the assessment of collagen gels relies on manual segmentation, which is time-consuming and suffers from serious intra- and inter-observer variability. In this study, we propose an automatic method combining various image processing techniques to resolve these problems. The proposed method first detects the maximal feasible contraction range of circular references (e.g., culture dish) and avoids the interference of irrelevant objects in the given image. Then, a three-step color conversion strategy is applied to normalize and enhance the contrast between the gel and background. We subsequently introduce a deformable circular model which utilizes regional intensity contrast and circular shape constraint to locate the gel boundary. An adaptive weighting scheme was employed to coordinate the model behavior, so that the proposed system can overcome variations of gel boundary appearances at different contraction stages. Two measurements of collagen gels (i.e., area and diameter) can readily be obtained based on the segmentation results. Experimental results, including 120 gel images for accuracy validation, showed high agreement between the proposed method and manual segmentation with an average dice similarity coefficient larger than 0.95. The results also demonstrated obvious improvement in gel contours obtained by the proposed method over two popular, generic segmentation methods.

Original languageEnglish
Article number085702
JournalMeasurement Science and Technology
Volume24
Issue number8
DOIs
Publication statusPublished - 2013 Aug

All Science Journal Classification (ASJC) codes

  • Instrumentation
  • Engineering (miscellaneous)
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Automatic and quantitative measurement of collagen gel contraction using model-guided segmentation'. Together they form a unique fingerprint.

Cite this