TY - GEN
T1 - Automatic HCC Detection Using Convolutional Network with Multi-Magnification Input Images
AU - Huang, Wei Che
AU - Chung, Pau Choo
AU - Tsai, Hung Wen
AU - Chow, Nan Haw
AU - Juang, Ying Zong
AU - Tsai, Hann Huei
AU - Lin, Shih Hsuan
AU - Wang, Cheng Hsiung
PY - 2019/3
Y1 - 2019/3
N2 - Liver cancer postoperative pathologic examination of stained tissues is an important step in identifying prognostic factors for follow-up care. Traditionally, liver cancer detection would be performed by pathologists with observing the entire biological tissue, resulting in heavy work loading and potential misjudgment. Accordingly, the studies of the automatic pathological examination have been popular for a long period of time. Most approaches of the existing cancer detection, however, only extract cell level information based on single-scale high-magnification patch. In liver tissues, common cell change phenomena such as apoptosis, necrosis, and steatosis are similar in tumor and benign. Hence, the detection may fail when the patch only covered the changed cells area that cannot provide enough neighboring cell structure information. To conquer this problem, the convolutional network architecture with multi-magnification input can provide not only the cell level information by referencing high-magnification patches, but also the cell structure information by referencing low-magnification patches. The detection algorithm consists of two main structures: 1) extraction of cell level and cell structure level feature maps from high-magnification and low-magnification images respectively by separate general convolutional networks, and 2) integration of multi-magnification features by fully connected network. In this paper, VGG16 and Inception V4 were applied as the based convolutional network for liver tumor detection task. The experimental results showed that VGG16 based multi-magnification input convolutional network achieved 91% mIOU on HCC tumor detection task. In addition, with comparison between single-scale CNN (SSCN) and multi-scale CNN (MSCN) approaches, the MSCN demonstrated that the multi-scale patches could provide better performance on HCC classification task.
AB - Liver cancer postoperative pathologic examination of stained tissues is an important step in identifying prognostic factors for follow-up care. Traditionally, liver cancer detection would be performed by pathologists with observing the entire biological tissue, resulting in heavy work loading and potential misjudgment. Accordingly, the studies of the automatic pathological examination have been popular for a long period of time. Most approaches of the existing cancer detection, however, only extract cell level information based on single-scale high-magnification patch. In liver tissues, common cell change phenomena such as apoptosis, necrosis, and steatosis are similar in tumor and benign. Hence, the detection may fail when the patch only covered the changed cells area that cannot provide enough neighboring cell structure information. To conquer this problem, the convolutional network architecture with multi-magnification input can provide not only the cell level information by referencing high-magnification patches, but also the cell structure information by referencing low-magnification patches. The detection algorithm consists of two main structures: 1) extraction of cell level and cell structure level feature maps from high-magnification and low-magnification images respectively by separate general convolutional networks, and 2) integration of multi-magnification features by fully connected network. In this paper, VGG16 and Inception V4 were applied as the based convolutional network for liver tumor detection task. The experimental results showed that VGG16 based multi-magnification input convolutional network achieved 91% mIOU on HCC tumor detection task. In addition, with comparison between single-scale CNN (SSCN) and multi-scale CNN (MSCN) approaches, the MSCN demonstrated that the multi-scale patches could provide better performance on HCC classification task.
UR - http://www.scopus.com/inward/record.url?scp=85070469791&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070469791&partnerID=8YFLogxK
U2 - 10.1109/AICAS.2019.8771535
DO - 10.1109/AICAS.2019.8771535
M3 - Conference contribution
T3 - Proceedings 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems, AICAS 2019
SP - 194
EP - 198
BT - Proceedings 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems, AICAS 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 1st IEEE International Conference on Artificial Intelligence Circuits and Systems, AICAS 2019
Y2 - 18 March 2019 through 20 March 2019
ER -