Average electro-mechanical properties and responses of active composites

Vahid Tajeddini, Chien Hong Lin, Anastasia Muliana, Martin Lévesque

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

This study deals with the overall electro-mechanical response of randomly positioned spherical particles reinforced piezoelectric composites. Different composites comprising of linearly elastic and piezoelectric constituents were studied. For the piezoelectric constituent, both linear and nonlinear electro-mechanical coupling behaviors were considered. Numerical representative volume elements (RVEs) were generated and finite element (FE) method was used in order to compute overall electro-mechanical response of the RVEs. The electro-mechanical predictions of the RVEs were compared against those of Mori-Tanaka, self-consistent and simplified unit-cell micromechanical models. A new first moment secant linearization was introduced in order to perform the homogenization of the nonlinearly piezoelectric composites followed by iteration in order to minimize errors (residual) from the linearization. For all boundary conditions, including nonlinear response, simulated in this work, the predictions given by the Mori-Tanaka and UC models were reasonably close to the ones of the RVE cases. Finally the RVEs were modified to examine the linear and nonlinear electro-mechanical responses of piezoelectric ceramics with pores. Depending on the prescribed boundary conditions, the existence of pores could significantly alter the electro-mechanical response of piezoelectric ceramics.

Original languageEnglish
Pages (from-to)405-414
Number of pages10
JournalComputational Materials Science
Volume82
DOIs
Publication statusPublished - 2014

All Science Journal Classification (ASJC) codes

  • Computer Science(all)
  • Chemistry(all)
  • Materials Science(all)
  • Mechanics of Materials
  • Physics and Astronomy(all)
  • Computational Mathematics

Fingerprint Dive into the research topics of 'Average electro-mechanical properties and responses of active composites'. Together they form a unique fingerprint.

Cite this