Band-to-band registration and ortho-rectification of multilens/multispectral imagery

A case study of MiniMCA-12 acquired by a fixed-wing UAS

Jyun Ping Jhan, Jiann-Yeou Rau, Cho Ying Huang

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

MiniMCA (Miniature Multiple Camera Array) is a lightweight, frame-based, and multilens composed multispectral sensor, which is suitable to mount on an unmanned aerial systems (UAS) to acquire high spatial and temporal resolution imagery for various remote sensing applications. Since MiniMCA has significant band misregistration effect, an automatic and precise band-to-band registration (BBR) method is proposed in this study. Based on the principle of sensor plane-to-plane projection, a modified projective transformation (MPT) model is developed. It is to estimate all coefficients of MPT from indoor camera calibration, together with two systematic errors correction. Therefore, we can transfer all bands into the same image space. Quantitative error analysis shows that the proposed BBR scheme is scene independent and can achieve 0.33 pixels of accuracy, which demonstrating the proposed method is accurate and reliable. Meanwhile, it is difficult to mark ground control points (GCPs) on the MiniMCA images, as its spatial resolution is low when the flight height is higher than 400 m. In this study, a higher resolution RGB camera is adopted to produce digital surface model (DSM) and assist MiniMCA ortho-image generation. After precise BBR, only one reference band of MiniMCA image is necessary for aerial triangulation because all bands have same exterior and interior orientation parameters. It means that all the MiniMCA imagery can be ortho-rectified through the same exterior and interior orientation parameters of the reference band. The result of the proposed ortho-rectification procedure shows the co-registration errors between MiniMCA reference band and the RGB ortho-images is less than 0.6 pixels.

Original languageEnglish
Pages (from-to)66-77
Number of pages12
JournalISPRS Journal of Photogrammetry and Remote Sensing
Volume114
DOIs
Publication statusPublished - 2016 Apr 1

Fingerprint

fixed wings
Fixed wings
rectification
imagery
Cameras
cameras
Antennas
pixel
sensor
aerial triangulation
error correction
Pixels
ground control
error analysis
registration
spatial resolution
Systematic errors
pixels
Sensors
Error correction

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics
  • Engineering (miscellaneous)
  • Computer Science Applications
  • Computers in Earth Sciences

Cite this

@article{a11d741b32284929862c88f757ec70e8,
title = "Band-to-band registration and ortho-rectification of multilens/multispectral imagery: A case study of MiniMCA-12 acquired by a fixed-wing UAS",
abstract = "MiniMCA (Miniature Multiple Camera Array) is a lightweight, frame-based, and multilens composed multispectral sensor, which is suitable to mount on an unmanned aerial systems (UAS) to acquire high spatial and temporal resolution imagery for various remote sensing applications. Since MiniMCA has significant band misregistration effect, an automatic and precise band-to-band registration (BBR) method is proposed in this study. Based on the principle of sensor plane-to-plane projection, a modified projective transformation (MPT) model is developed. It is to estimate all coefficients of MPT from indoor camera calibration, together with two systematic errors correction. Therefore, we can transfer all bands into the same image space. Quantitative error analysis shows that the proposed BBR scheme is scene independent and can achieve 0.33 pixels of accuracy, which demonstrating the proposed method is accurate and reliable. Meanwhile, it is difficult to mark ground control points (GCPs) on the MiniMCA images, as its spatial resolution is low when the flight height is higher than 400 m. In this study, a higher resolution RGB camera is adopted to produce digital surface model (DSM) and assist MiniMCA ortho-image generation. After precise BBR, only one reference band of MiniMCA image is necessary for aerial triangulation because all bands have same exterior and interior orientation parameters. It means that all the MiniMCA imagery can be ortho-rectified through the same exterior and interior orientation parameters of the reference band. The result of the proposed ortho-rectification procedure shows the co-registration errors between MiniMCA reference band and the RGB ortho-images is less than 0.6 pixels.",
author = "Jhan, {Jyun Ping} and Jiann-Yeou Rau and Huang, {Cho Ying}",
year = "2016",
month = "4",
day = "1",
doi = "10.1016/j.isprsjprs.2016.01.008",
language = "English",
volume = "114",
pages = "66--77",
journal = "ISPRS Journal of Photogrammetry and Remote Sensing",
issn = "0924-2716",
publisher = "Elsevier",

}

TY - JOUR

T1 - Band-to-band registration and ortho-rectification of multilens/multispectral imagery

T2 - A case study of MiniMCA-12 acquired by a fixed-wing UAS

AU - Jhan, Jyun Ping

AU - Rau, Jiann-Yeou

AU - Huang, Cho Ying

PY - 2016/4/1

Y1 - 2016/4/1

N2 - MiniMCA (Miniature Multiple Camera Array) is a lightweight, frame-based, and multilens composed multispectral sensor, which is suitable to mount on an unmanned aerial systems (UAS) to acquire high spatial and temporal resolution imagery for various remote sensing applications. Since MiniMCA has significant band misregistration effect, an automatic and precise band-to-band registration (BBR) method is proposed in this study. Based on the principle of sensor plane-to-plane projection, a modified projective transformation (MPT) model is developed. It is to estimate all coefficients of MPT from indoor camera calibration, together with two systematic errors correction. Therefore, we can transfer all bands into the same image space. Quantitative error analysis shows that the proposed BBR scheme is scene independent and can achieve 0.33 pixels of accuracy, which demonstrating the proposed method is accurate and reliable. Meanwhile, it is difficult to mark ground control points (GCPs) on the MiniMCA images, as its spatial resolution is low when the flight height is higher than 400 m. In this study, a higher resolution RGB camera is adopted to produce digital surface model (DSM) and assist MiniMCA ortho-image generation. After precise BBR, only one reference band of MiniMCA image is necessary for aerial triangulation because all bands have same exterior and interior orientation parameters. It means that all the MiniMCA imagery can be ortho-rectified through the same exterior and interior orientation parameters of the reference band. The result of the proposed ortho-rectification procedure shows the co-registration errors between MiniMCA reference band and the RGB ortho-images is less than 0.6 pixels.

AB - MiniMCA (Miniature Multiple Camera Array) is a lightweight, frame-based, and multilens composed multispectral sensor, which is suitable to mount on an unmanned aerial systems (UAS) to acquire high spatial and temporal resolution imagery for various remote sensing applications. Since MiniMCA has significant band misregistration effect, an automatic and precise band-to-band registration (BBR) method is proposed in this study. Based on the principle of sensor plane-to-plane projection, a modified projective transformation (MPT) model is developed. It is to estimate all coefficients of MPT from indoor camera calibration, together with two systematic errors correction. Therefore, we can transfer all bands into the same image space. Quantitative error analysis shows that the proposed BBR scheme is scene independent and can achieve 0.33 pixels of accuracy, which demonstrating the proposed method is accurate and reliable. Meanwhile, it is difficult to mark ground control points (GCPs) on the MiniMCA images, as its spatial resolution is low when the flight height is higher than 400 m. In this study, a higher resolution RGB camera is adopted to produce digital surface model (DSM) and assist MiniMCA ortho-image generation. After precise BBR, only one reference band of MiniMCA image is necessary for aerial triangulation because all bands have same exterior and interior orientation parameters. It means that all the MiniMCA imagery can be ortho-rectified through the same exterior and interior orientation parameters of the reference band. The result of the proposed ortho-rectification procedure shows the co-registration errors between MiniMCA reference band and the RGB ortho-images is less than 0.6 pixels.

UR - http://www.scopus.com/inward/record.url?scp=84957928091&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84957928091&partnerID=8YFLogxK

U2 - 10.1016/j.isprsjprs.2016.01.008

DO - 10.1016/j.isprsjprs.2016.01.008

M3 - Article

VL - 114

SP - 66

EP - 77

JO - ISPRS Journal of Photogrammetry and Remote Sensing

JF - ISPRS Journal of Photogrammetry and Remote Sensing

SN - 0924-2716

ER -