TY - JOUR
T1 - Bernstein-Sato polynomials on normal toric varieties
AU - Hsiao, Jen Chieh
AU - Matusevich, Laura Felicia
N1 - Publisher Copyright:
© 2018 University of Michigan. All rights reserved.
PY - 2018/3
Y1 - 2018/3
N2 - We generalize the Bernstein-Sato polynomials of Budur, Mustaţǎ, and Saito to ideals in normal semigroup rings. In the case of monomial ideals, we also relate the roots of the Bernstein-Sato polynomial to the jumping coefficients of the corresponding multiplier ideals. To prove the latter result, we obtain a new combinatorial description for the multiplier ideals of a monomial ideal in a normal semigroup ring.
AB - We generalize the Bernstein-Sato polynomials of Budur, Mustaţǎ, and Saito to ideals in normal semigroup rings. In the case of monomial ideals, we also relate the roots of the Bernstein-Sato polynomial to the jumping coefficients of the corresponding multiplier ideals. To prove the latter result, we obtain a new combinatorial description for the multiplier ideals of a monomial ideal in a normal semigroup ring.
UR - http://www.scopus.com/inward/record.url?scp=85043490731&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85043490731&partnerID=8YFLogxK
U2 - 10.1307/mmj/1516330970
DO - 10.1307/mmj/1516330970
M3 - Article
AN - SCOPUS:85043490731
SN - 0026-2285
VL - 67
SP - 117
EP - 132
JO - Michigan Mathematical Journal
JF - Michigan Mathematical Journal
IS - 1
ER -