Bicontinuous oxide heteroepitaxy with enhanced photoconductivity

Pao Wen Shao, Yi Xian Wu, Wei Han Chen, Mojue Zhang, Minyi Dai, Yen Chien Kuo, Shang Hsien Hsieh, Yi Cheng Tang, Po Liang Liu, Pu Yu, Yuang Chen, Rong Huang, Chia Hao Chen, Ju Hung Hsu, Yi Chun Chen, Jia Mian Hu, Ying Hao Chu

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Self-assembled systems have recently attracted extensive attention because they can display a wide range of phase morphologies in nanocomposites, providing a new arena to explore novel phenomena. Among these morphologies, a bicontinuous structure is highly desirable based on its high interface-to-volume ratio and 3D interconnectivity. A bicontinuous nickel oxide (NiO) and tin dioxide (SnO2) heteroepitaxial nanocomposite is revealed here. By controlling their concentration, we fabricated tuneable self-assembled nanostructures from pillars to bicontinuous structures, as evidenced by TEM-energy-dispersive X-ray spectroscopy with a tortuous compositional distribution. The experimentally observed growth modes are consistent with predictions by first-principles calculations. Phase-field simulations are performed to understand 3D microstructure formation and extract key thermodynamic parameters for predicting microstructure morphologies in SnO2:NiO nanocomposites of other concentrations. Furthermore, we demonstrate significantly enhanced photovoltaic properties in a bicontinuous SnO2:NiO nanocomposite macroscopically and microscopically. This research shows a pathway to developing innovative solar cell and photodetector devices based on self-assembled oxides.

Original languageEnglish
Article number21
JournalNature communications
Volume14
Issue number1
DOIs
Publication statusPublished - 2023 Dec

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy
  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Bicontinuous oxide heteroepitaxy with enhanced photoconductivity'. Together they form a unique fingerprint.

Cite this