Abstract
A novel GaAs n+-n-δ(p+)-n-p+-n-δ(p+)-n-n+ double heterojunction triangular barrier structure with two Al0.3G0.7As-doped barrier layers, exhibiting symmetrically bidirectional S-shaped negative differential resistance, has been successfully developed by molecular beam epitaxy. The occurrence of the bidirectional bistability switching behavior is caused by the potential redistribution due to the avalanche multiplication process within the reversely biased base-collector region. The possible mechanisms responsible for carrier transport are analyzed by an equivalent circuit including two triangular barrier diodes and annpn transistor. From experimental results, it is known that the environmental temperature plays an important role on the device performance. The influence of temperature on the switching parameters from 300 K to 150 K is also discussed.
Original language | English |
---|---|
Pages (from-to) | 104-109 |
Number of pages | 6 |
Journal | Thin Solid Films |
Volume | 257 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1995 Feb 15 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry