Biological treatment of high strength monoethanolamine (MEA)-containing wastewater from printed circuit board manufacturing industry

Yi Ju Wu, Hsin Yu Chen, Ben Chiau Chang, Fang Shian Shiu, Kao Sheng Lin, Ke Fan Lin, Wan Ru Chen, Tsair Fuh Lin, Liang Ming Whang

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Develop-etch-strip (DES) process in printed circuit board (PCB) manufacturing industries produces wastewater containing high organic nitrogen, in which monoethanolamine (MEA) is the main COD and nitrogen source. This study evaluated feasibility of biological treatment of high concentration MEA-containing acidified DES wastewater collected from a full-scale PCB industry. Batch test results indicated that aerobic conditions attained the highest specific COD degradation rates (6.5–14.6 mgCOD/gVSS/h), anoxic conditions attained second (4.81 mgCOD/gVSS/h), and anaerobic conditions was the lowest (1.3–3 mgCOD/gVSS/h). The anoxic/oxic (A/O) sequencing batch reactor (SBR) with porous polyurethanes carriers, BioNET, was able to treat MEA-containing acidified DES wastewater with 80 % COD removal and 23 % TN removal at influent COD of 300 mg/L, while the A/O continuous stirred tank reactor (CSTR) with BioNET at 8 h of HRT achieved above 96 % COD removal and 78 % TN removal at influent COD of 630 mg/L. The aerobic batch test results indicated that specific COD degradation rates followed a Haldane-type model, suggesting that MEA acts as an inhibitory substrate, especially at concentrations above 2000 mg/L. In addition, MEA inhibited the onset of nitrification, but not specific nitrate production rate, suggesting that MEA may inhibit nitrification by inhibiting expression of amoA gene, based on amoA gene expression results. Finally, the contribution for COD degradation, denitrification and nitrification by BioNET (< 20 %) was lower than that for suspended sludge in the A/O CSTR, suggesting that the role of BioNET carriers could retain microorganisms and served as the habitats for microorganisms to avoid washout at a shorten HRT situation.

Original languageEnglish
Pages (from-to)613-620
Number of pages8
JournalProcess Safety and Environmental Protection
Volume163
DOIs
Publication statusPublished - 2022 Jul

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • General Chemical Engineering
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Biological treatment of high strength monoethanolamine (MEA)-containing wastewater from printed circuit board manufacturing industry'. Together they form a unique fingerprint.

Cite this