TY - JOUR
T1 - Biomechanical comparisons of hook plate and screw fixations in split-type greater tuberosity fractures of the humerus
AU - Kuan, Fa Chuan
AU - Hsu, Kai Lan
AU - Hong, Chih Kai
AU - Chen, Yueh
AU - Chiang, Chen Hao
AU - Chang, Hao Ming
AU - Su, Wei Ren
N1 - Publisher Copyright:
© 2022 Journal of Shoulder and Elbow Surgery Board of Trustees
PY - 2022/6
Y1 - 2022/6
N2 - Background: Screws and plate are commonly utilized for the fixation of split-type humeral greater tuberosity (GT) fractures. However, the mechanical properties of these 2 types of fixation methods have not been compared directly. The aim of the present study was to evaluate the classic 2 screws fixation with hook locking plate from a mechanical perspective. Methods: Sixteen synthetic humerii (Sawbones Pacific Research Laboratories, Vashon, WA, USA) were divided into 2 groups. An osteotomy was performed to simulate a split-type GT fracture. Group A (n = 8) was fixed with 2 standard parallel screws. Group B (n = 8) was fixed with a hook plate. Each specimen was tested with traction force at 45° shoulder abduction. Following the 20-N preload, a 500-cycle loading test was applied with a force ranging from 20 to 200 N (valley/peak), and the interfragmental displacement was measured periodically at intervals of 100 cycles. Finally, all the specimens were pulled with destructive force at a rate of 5 mm/min until catastrophic failure. Results: The hook plate exhibited greater construct stiffness than the screw fixation (63.2 ± 6.1 N/mm vs. 40.9 ± 3.4 N/mm, P < .001). All of the specimens completed the entire cyclic loading test without catastrophic failure, and the fragment displacement after 500 cycles was 0.4 ± 0.2 mm for the hook plate and 2.1 ± 0.3 mm for screw fixation, which was statistically lower in the plate group (P < .001). In terms of failure load, the hook plate group exhibited a significantly greater value than the screw group (770.6 ± 94.6 vs. 427.5 ± 45.1 N/mm, P < .001). The failure modes of both fixation methods were distinct. Conclusion: In humeral GT fracture fixation, hook plate fixation appears to offer greater construct stiffness and failure load while maintaining fragment stability to resist a physiological traction force. The current study provides support from a mechanical perspective for the clinical application of the hook plate.
AB - Background: Screws and plate are commonly utilized for the fixation of split-type humeral greater tuberosity (GT) fractures. However, the mechanical properties of these 2 types of fixation methods have not been compared directly. The aim of the present study was to evaluate the classic 2 screws fixation with hook locking plate from a mechanical perspective. Methods: Sixteen synthetic humerii (Sawbones Pacific Research Laboratories, Vashon, WA, USA) were divided into 2 groups. An osteotomy was performed to simulate a split-type GT fracture. Group A (n = 8) was fixed with 2 standard parallel screws. Group B (n = 8) was fixed with a hook plate. Each specimen was tested with traction force at 45° shoulder abduction. Following the 20-N preload, a 500-cycle loading test was applied with a force ranging from 20 to 200 N (valley/peak), and the interfragmental displacement was measured periodically at intervals of 100 cycles. Finally, all the specimens were pulled with destructive force at a rate of 5 mm/min until catastrophic failure. Results: The hook plate exhibited greater construct stiffness than the screw fixation (63.2 ± 6.1 N/mm vs. 40.9 ± 3.4 N/mm, P < .001). All of the specimens completed the entire cyclic loading test without catastrophic failure, and the fragment displacement after 500 cycles was 0.4 ± 0.2 mm for the hook plate and 2.1 ± 0.3 mm for screw fixation, which was statistically lower in the plate group (P < .001). In terms of failure load, the hook plate group exhibited a significantly greater value than the screw group (770.6 ± 94.6 vs. 427.5 ± 45.1 N/mm, P < .001). The failure modes of both fixation methods were distinct. Conclusion: In humeral GT fracture fixation, hook plate fixation appears to offer greater construct stiffness and failure load while maintaining fragment stability to resist a physiological traction force. The current study provides support from a mechanical perspective for the clinical application of the hook plate.
UR - http://www.scopus.com/inward/record.url?scp=85130412045&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85130412045&partnerID=8YFLogxK
U2 - 10.1016/j.jse.2021.12.023
DO - 10.1016/j.jse.2021.12.023
M3 - Article
C2 - 35066120
AN - SCOPUS:85130412045
SN - 1058-2746
VL - 31
SP - 1308
EP - 1315
JO - Journal of Shoulder and Elbow Surgery
JF - Journal of Shoulder and Elbow Surgery
IS - 6
ER -