Biomechanical evaluation of cervical spine fixation after healing in a destabilized cervical spine model in sheep: A comparison of the anterior plating and posterior wiring techniques

Ming Yang Lee, Guan Liang Chang, Jia Hao Chang, Yu-Chang Hong, Ching Hong Chang, E-Jian Lee

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

BACKGROUND: We conducted biomechanical evaluation of the anterior plating and posterior wiring techniques for cervical spine stabilization after a course of healing in sheep. METHODS: Seventeen sheep were included, and six of which underwent sham operations (group A, n ≤ 6). The other eleven received complete C2-C3 destabilization, followed by intervertebral bone grafting and cervical stabilization either with anterior plating (group B, n ≤ 5) or posterior wiring (group C, n ≤ 6) techniques. These animals were killed 6 months later. Ligamentous spines (C1-C5) were subjected to the relevantly applied loads. The load-deformation data of the C2-C3 and C3-C4 functional units were recorded and analyzed. RESULTS: At the C2-C3 functional unit, group B had the least motion ranges in flexion, lateral bending, and rotation loads than did the other two groups. Significantly smaller motion ranges of lateral bending and rotation loads were found in group B than in group C (p < 0.05). Compared with group A, group C had a decreased motion range in flexion load but showed increased motion range in rotation load. Consequently, group B had superior intervertebral fusion and less osteophyte than did group C. At the C3-C4 functional unit, group B showed significantly decreased motion ranges in extension and lateral bending loads (p < 0.05), while group C did not. CONCLUSION: The results indicated that the anterior plate-stabilized spines were more stable over time than did the posterior-wired spines. This biomechanical advantage eventually resulted in superior intervertebral fusion masses in the former, although it also induced a slightly decreased motion range at the contiguous functional unit. In exclusively posterior wired-spines, the weakness for opposing rotation loads might contribute to the formation of osteophytes at the fusion functional unit. These data point out that the mode and stability of implant fixation systems greatly influence the biomechanical redistribution and bone-adaptive remodeling process during healing, which are closely related to the bone graft maturation and osteophytic formations at the fusion level and the occurrence of stiffening problems at the contiguous levels.

Original languageEnglish
Pages (from-to)1307-1314
Number of pages8
JournalJournal of Trauma - Injury, Infection and Critical Care
Volume60
Issue number6
DOIs
Publication statusPublished - 2006 Jun 1

Fingerprint

Articular Range of Motion
Sheep
Spine
Osteophyte
Bone Transplantation
Bone Remodeling
Transplants
Bone and Bones

All Science Journal Classification (ASJC) codes

  • Surgery
  • Critical Care and Intensive Care Medicine

Cite this

@article{c4ee81e570e64663be4a5af4662dd885,
title = "Biomechanical evaluation of cervical spine fixation after healing in a destabilized cervical spine model in sheep: A comparison of the anterior plating and posterior wiring techniques",
abstract = "BACKGROUND: We conducted biomechanical evaluation of the anterior plating and posterior wiring techniques for cervical spine stabilization after a course of healing in sheep. METHODS: Seventeen sheep were included, and six of which underwent sham operations (group A, n ≤ 6). The other eleven received complete C2-C3 destabilization, followed by intervertebral bone grafting and cervical stabilization either with anterior plating (group B, n ≤ 5) or posterior wiring (group C, n ≤ 6) techniques. These animals were killed 6 months later. Ligamentous spines (C1-C5) were subjected to the relevantly applied loads. The load-deformation data of the C2-C3 and C3-C4 functional units were recorded and analyzed. RESULTS: At the C2-C3 functional unit, group B had the least motion ranges in flexion, lateral bending, and rotation loads than did the other two groups. Significantly smaller motion ranges of lateral bending and rotation loads were found in group B than in group C (p < 0.05). Compared with group A, group C had a decreased motion range in flexion load but showed increased motion range in rotation load. Consequently, group B had superior intervertebral fusion and less osteophyte than did group C. At the C3-C4 functional unit, group B showed significantly decreased motion ranges in extension and lateral bending loads (p < 0.05), while group C did not. CONCLUSION: The results indicated that the anterior plate-stabilized spines were more stable over time than did the posterior-wired spines. This biomechanical advantage eventually resulted in superior intervertebral fusion masses in the former, although it also induced a slightly decreased motion range at the contiguous functional unit. In exclusively posterior wired-spines, the weakness for opposing rotation loads might contribute to the formation of osteophytes at the fusion functional unit. These data point out that the mode and stability of implant fixation systems greatly influence the biomechanical redistribution and bone-adaptive remodeling process during healing, which are closely related to the bone graft maturation and osteophytic formations at the fusion level and the occurrence of stiffening problems at the contiguous levels.",
author = "Lee, {Ming Yang} and Chang, {Guan Liang} and Chang, {Jia Hao} and Yu-Chang Hong and Chang, {Ching Hong} and E-Jian Lee",
year = "2006",
month = "6",
day = "1",
doi = "10.1097/01.ta.0000220438.61246.58",
language = "English",
volume = "60",
pages = "1307--1314",
journal = "Journal of Trauma and Acute Care Surgery",
issn = "2163-0755",
publisher = "Lippincott Williams and Wilkins",
number = "6",

}

TY - JOUR

T1 - Biomechanical evaluation of cervical spine fixation after healing in a destabilized cervical spine model in sheep

T2 - A comparison of the anterior plating and posterior wiring techniques

AU - Lee, Ming Yang

AU - Chang, Guan Liang

AU - Chang, Jia Hao

AU - Hong, Yu-Chang

AU - Chang, Ching Hong

AU - Lee, E-Jian

PY - 2006/6/1

Y1 - 2006/6/1

N2 - BACKGROUND: We conducted biomechanical evaluation of the anterior plating and posterior wiring techniques for cervical spine stabilization after a course of healing in sheep. METHODS: Seventeen sheep were included, and six of which underwent sham operations (group A, n ≤ 6). The other eleven received complete C2-C3 destabilization, followed by intervertebral bone grafting and cervical stabilization either with anterior plating (group B, n ≤ 5) or posterior wiring (group C, n ≤ 6) techniques. These animals were killed 6 months later. Ligamentous spines (C1-C5) were subjected to the relevantly applied loads. The load-deformation data of the C2-C3 and C3-C4 functional units were recorded and analyzed. RESULTS: At the C2-C3 functional unit, group B had the least motion ranges in flexion, lateral bending, and rotation loads than did the other two groups. Significantly smaller motion ranges of lateral bending and rotation loads were found in group B than in group C (p < 0.05). Compared with group A, group C had a decreased motion range in flexion load but showed increased motion range in rotation load. Consequently, group B had superior intervertebral fusion and less osteophyte than did group C. At the C3-C4 functional unit, group B showed significantly decreased motion ranges in extension and lateral bending loads (p < 0.05), while group C did not. CONCLUSION: The results indicated that the anterior plate-stabilized spines were more stable over time than did the posterior-wired spines. This biomechanical advantage eventually resulted in superior intervertebral fusion masses in the former, although it also induced a slightly decreased motion range at the contiguous functional unit. In exclusively posterior wired-spines, the weakness for opposing rotation loads might contribute to the formation of osteophytes at the fusion functional unit. These data point out that the mode and stability of implant fixation systems greatly influence the biomechanical redistribution and bone-adaptive remodeling process during healing, which are closely related to the bone graft maturation and osteophytic formations at the fusion level and the occurrence of stiffening problems at the contiguous levels.

AB - BACKGROUND: We conducted biomechanical evaluation of the anterior plating and posterior wiring techniques for cervical spine stabilization after a course of healing in sheep. METHODS: Seventeen sheep were included, and six of which underwent sham operations (group A, n ≤ 6). The other eleven received complete C2-C3 destabilization, followed by intervertebral bone grafting and cervical stabilization either with anterior plating (group B, n ≤ 5) or posterior wiring (group C, n ≤ 6) techniques. These animals were killed 6 months later. Ligamentous spines (C1-C5) were subjected to the relevantly applied loads. The load-deformation data of the C2-C3 and C3-C4 functional units were recorded and analyzed. RESULTS: At the C2-C3 functional unit, group B had the least motion ranges in flexion, lateral bending, and rotation loads than did the other two groups. Significantly smaller motion ranges of lateral bending and rotation loads were found in group B than in group C (p < 0.05). Compared with group A, group C had a decreased motion range in flexion load but showed increased motion range in rotation load. Consequently, group B had superior intervertebral fusion and less osteophyte than did group C. At the C3-C4 functional unit, group B showed significantly decreased motion ranges in extension and lateral bending loads (p < 0.05), while group C did not. CONCLUSION: The results indicated that the anterior plate-stabilized spines were more stable over time than did the posterior-wired spines. This biomechanical advantage eventually resulted in superior intervertebral fusion masses in the former, although it also induced a slightly decreased motion range at the contiguous functional unit. In exclusively posterior wired-spines, the weakness for opposing rotation loads might contribute to the formation of osteophytes at the fusion functional unit. These data point out that the mode and stability of implant fixation systems greatly influence the biomechanical redistribution and bone-adaptive remodeling process during healing, which are closely related to the bone graft maturation and osteophytic formations at the fusion level and the occurrence of stiffening problems at the contiguous levels.

UR - http://www.scopus.com/inward/record.url?scp=33745284308&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33745284308&partnerID=8YFLogxK

U2 - 10.1097/01.ta.0000220438.61246.58

DO - 10.1097/01.ta.0000220438.61246.58

M3 - Article

C2 - 16766976

AN - SCOPUS:33745284308

VL - 60

SP - 1307

EP - 1314

JO - Journal of Trauma and Acute Care Surgery

JF - Journal of Trauma and Acute Care Surgery

SN - 2163-0755

IS - 6

ER -