TY - JOUR
T1 - Biomimicking Platelet–Monocyte Interactions as a Novel Targeting Strategy for Heart Healing
AU - Cheng, Bill
AU - Toh, Elsie K.W.
AU - Chen, Kun Hung
AU - Chang, Yuan Chih
AU - Hu, Che Ming J.
AU - Wu, Han Chung
AU - Chau, Lee Young
AU - Chen, Peilin
AU - Hsieh, Patrick C.H.
N1 - Publisher Copyright:
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2016/10/26
Y1 - 2016/10/26
N2 - In patients who survive myocardial infarction, many go on to develop congestive heart failure (CHF). Despite ongoing efforts to develop new approaches for postinfarction therapy, there are still no effective therapeutic options available to CHF patients. Currently, the delivery of cardioprotective drugs relies entirely on passive uptake via the enhanced permeability and retention (EPR) effect which occurs in proximity to the infarction site. However, in ischemic disease, unlike in cancer, the EPR effect only exists for a short duration postinfarction and thus insufficient for meaningful cardioprotection. Splenic monocytes are recruited to the heart in large numbers postinfarction, and are known to interact with platelets during circulation. Therefore, the strategy is to exploit this interaction by developing platelet-like proteoliposomes (PLPs), biomimicking platelet interactions with circulating monocytes. PLPs show strong binding affinity for monocytes but not for endothelial cells in vitro, mimicking normal platelet activity. Furthermore, intravital multiphoton imaging shows that comparing to plain liposomes, PLPs do not aggregate on uninjured endothelium but do accumulate at the injury site 72 h postinfarction. Importantly, PLPs enhance the targeting of anti-inflammatory drug, cobalt protoporphyrin, to the heart in an EPR-independent manner, which result in better therapeutic outcome.
AB - In patients who survive myocardial infarction, many go on to develop congestive heart failure (CHF). Despite ongoing efforts to develop new approaches for postinfarction therapy, there are still no effective therapeutic options available to CHF patients. Currently, the delivery of cardioprotective drugs relies entirely on passive uptake via the enhanced permeability and retention (EPR) effect which occurs in proximity to the infarction site. However, in ischemic disease, unlike in cancer, the EPR effect only exists for a short duration postinfarction and thus insufficient for meaningful cardioprotection. Splenic monocytes are recruited to the heart in large numbers postinfarction, and are known to interact with platelets during circulation. Therefore, the strategy is to exploit this interaction by developing platelet-like proteoliposomes (PLPs), biomimicking platelet interactions with circulating monocytes. PLPs show strong binding affinity for monocytes but not for endothelial cells in vitro, mimicking normal platelet activity. Furthermore, intravital multiphoton imaging shows that comparing to plain liposomes, PLPs do not aggregate on uninjured endothelium but do accumulate at the injury site 72 h postinfarction. Importantly, PLPs enhance the targeting of anti-inflammatory drug, cobalt protoporphyrin, to the heart in an EPR-independent manner, which result in better therapeutic outcome.
UR - http://www.scopus.com/inward/record.url?scp=84985991371&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84985991371&partnerID=8YFLogxK
U2 - 10.1002/adhm.201600724
DO - 10.1002/adhm.201600724
M3 - Article
C2 - 27592617
AN - SCOPUS:84985991371
SN - 2192-2640
VL - 5
SP - 2686
EP - 2697
JO - Advanced healthcare materials
JF - Advanced healthcare materials
IS - 20
ER -