TY - JOUR
T1 - Bismuth Pelvic X-Ray Shielding Reduces Radiation Dose Exposure in Pediatric Radiography
AU - Wang, Bow
AU - Ting, Chien Yi
AU - Lai, Cheng Shih
AU - Tsai, Yi Shan
N1 - Publisher Copyright:
© 2021 Bow Wang et al.
PY - 2021
Y1 - 2021
N2 - Background. Radiation using conventional X-ray is associated with exposure of radiosensitive organs and typically requires the use of protection. This study is aimed at evaluating the use of bismuth shielding for radiation protection in pediatric pelvic radiography. The effects of the anteroposterior and lateral bismuth shielding were verified by direct measurements at the anatomical position of the gonads. Methods. Radiation doses were measured using optically stimulated luminescence dosimeters (OSLD) and CIRS ATOM Dosimetry Verification Phantoms. Gonad radiographs were acquired using different shields of varying material (lead, bismuth) and thickness and were compared with radiographs obtained without shielding to examine the effects on image quality and optimal reduction of radiation dose. All images were evaluated separately by three pediatric orthopedic practitioners. Results. Results showed that conventional lead gonadal shielding reduces radiation doses by 67.45%, whereas dose reduction using one layer of bismuth shielding is 76.38%. The use of two layers of bismuth shielding reduces the dose by 84.01%. Using three and four layers of bismuth shielding reduces dose by 97.33% and 99.34%, respectively. Progressively lower radiation doses can be achieved by increasing the number of bismuth layers. Images obtained using both one and two layers of bismuth shielding provided adequate diagnostic information, but those obtained using three or four layers of bismuth shielding were inadequate for diagnosis. Conclusions. Bismuth shielding reduces radiation dose exposure providing appropriate protection for children undergoing pelvic radiography. The bismuth shielding material is lighter than lead, making pediatric patients more comfortable and less apt to move, thereby avoiding repeat radiography.
AB - Background. Radiation using conventional X-ray is associated with exposure of radiosensitive organs and typically requires the use of protection. This study is aimed at evaluating the use of bismuth shielding for radiation protection in pediatric pelvic radiography. The effects of the anteroposterior and lateral bismuth shielding were verified by direct measurements at the anatomical position of the gonads. Methods. Radiation doses were measured using optically stimulated luminescence dosimeters (OSLD) and CIRS ATOM Dosimetry Verification Phantoms. Gonad radiographs were acquired using different shields of varying material (lead, bismuth) and thickness and were compared with radiographs obtained without shielding to examine the effects on image quality and optimal reduction of radiation dose. All images were evaluated separately by three pediatric orthopedic practitioners. Results. Results showed that conventional lead gonadal shielding reduces radiation doses by 67.45%, whereas dose reduction using one layer of bismuth shielding is 76.38%. The use of two layers of bismuth shielding reduces the dose by 84.01%. Using three and four layers of bismuth shielding reduces dose by 97.33% and 99.34%, respectively. Progressively lower radiation doses can be achieved by increasing the number of bismuth layers. Images obtained using both one and two layers of bismuth shielding provided adequate diagnostic information, but those obtained using three or four layers of bismuth shielding were inadequate for diagnosis. Conclusions. Bismuth shielding reduces radiation dose exposure providing appropriate protection for children undergoing pelvic radiography. The bismuth shielding material is lighter than lead, making pediatric patients more comfortable and less apt to move, thereby avoiding repeat radiography.
UR - http://www.scopus.com/inward/record.url?scp=85118370865&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85118370865&partnerID=8YFLogxK
U2 - 10.1155/2021/9985714
DO - 10.1155/2021/9985714
M3 - Article
C2 - 34671681
AN - SCOPUS:85118370865
SN - 2314-6133
VL - 2021
JO - BioMed research international
JF - BioMed research international
M1 - 9985714
ER -