TY - JOUR

T1 - Bounding volumes of singular fano threefolds

AU - Lai, Ching Jui

N1 - Publisher Copyright:
© 2016 by The Editorial Board of the Nagoya Mathematical Journal.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.

PY - 2016/12/1

Y1 - 2016/12/1

N2 - Let (X, Δ) be an n-dimensional ϵ-klt log ℚ-Fano pair. We give an upper bound for the volume Vol(X, Δ) = (-(KX + Δ))n when n = 2 , or n = 3 and X is ℚ-factorial of ρ(X)=1 . This bound is essentially sharp for . The main idea is to analyze the covering families of tigers constructed in J.Â McKernan (Boundedness of log terminal fano pairs of bounded index, preprint, 2002, arXiv:0205214). Existence of an upper bound for volumes is related to the Borisov-Alexeev-Borisov Conjecture, which asserts boundedness of the set of ϵ-klt log ℚ-Fano varieties of a given dimension.

AB - Let (X, Δ) be an n-dimensional ϵ-klt log ℚ-Fano pair. We give an upper bound for the volume Vol(X, Δ) = (-(KX + Δ))n when n = 2 , or n = 3 and X is ℚ-factorial of ρ(X)=1 . This bound is essentially sharp for . The main idea is to analyze the covering families of tigers constructed in J.Â McKernan (Boundedness of log terminal fano pairs of bounded index, preprint, 2002, arXiv:0205214). Existence of an upper bound for volumes is related to the Borisov-Alexeev-Borisov Conjecture, which asserts boundedness of the set of ϵ-klt log ℚ-Fano varieties of a given dimension.

UR - http://www.scopus.com/inward/record.url?scp=85019561201&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85019561201&partnerID=8YFLogxK

U2 - 10.1017/nmj.2016.21

DO - 10.1017/nmj.2016.21

M3 - Article

AN - SCOPUS:85019561201

VL - 224

SP - 37

EP - 73

JO - Nagoya Mathematical Journal

JF - Nagoya Mathematical Journal

SN - 0027-7630

ER -