Abstract
We report experimental observations of shell buckling instabilities in free-standing, vertically aligned GaN nanotubes subjected to uniaxial compression. Highly uniform arrays of the GaN nanotubes standing on a GaN template were fabricated and subjected to uniaxial compression using a nanoindenter. The buckling load was found to be of the order of 150 νN for the GaN nanotubes with an outer radius of 40 nm, an inner radius of 20 nm, and heights of 500 and 300 nm. Good agreement was found between the experimental observations, the stress-strain relation equation study findings and the predictions from the cylindrical shell buckling theory.
Original language | English |
---|---|
Pages (from-to) | 2203-2208 |
Number of pages | 6 |
Journal | Nanotechnology |
Volume | 16 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2005 Oct 1 |
All Science Journal Classification (ASJC) codes
- Bioengineering
- Chemistry(all)
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering