TY - JOUR
T1 - Carleman estimate for second order elliptic equations with Lipschitz leading coefficients and jumps at an interface
AU - Di Cristo, M.
AU - Francini, E.
AU - Lin, C. L.
AU - Vessella, S.
AU - Wang, J. N.
N1 - Publisher Copyright:
© 2016 Elsevier Masson SAS
PY - 2017/8
Y1 - 2017/8
N2 - In this paper we prove a local Carleman estimate for second order elliptic equations with a general anisotropic Lipschitz coefficients having a jump at an interface. The argument we use is of microlocal nature. Yet, not relying on pseudodifferential calculus, our approach allows one to achieve almost optimal assumptions on the regularity of the coefficients and, consequently, of the interface.
AB - In this paper we prove a local Carleman estimate for second order elliptic equations with a general anisotropic Lipschitz coefficients having a jump at an interface. The argument we use is of microlocal nature. Yet, not relying on pseudodifferential calculus, our approach allows one to achieve almost optimal assumptions on the regularity of the coefficients and, consequently, of the interface.
UR - http://www.scopus.com/inward/record.url?scp=85013997987&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85013997987&partnerID=8YFLogxK
U2 - 10.1016/j.matpur.2016.10.015
DO - 10.1016/j.matpur.2016.10.015
M3 - Article
AN - SCOPUS:85013997987
SN - 0021-7824
VL - 108
SP - 163
EP - 206
JO - Journal des Mathematiques Pures et Appliquees
JF - Journal des Mathematiques Pures et Appliquees
IS - 2
ER -