Catalyst combination strategy for hydrogen production from methanol partial oxidation

Wei Hsin Chen, Kuan Hsiang Chen, Bo Jhih Lin, Yu Zhi Guo

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Methanol is a promising feedstock for hydrogen production. This study experimentally investigates hydrogen production from the partial oxidation of methanol (POM) in sprays and dual-catalyst bed. Two different catalysts of h-BN-Pt/Al2O3 and h-BN-Pd/Al2O3 with low Pt and Pd contents (0.2 wt%) are utilized. The effects of preheating temperatures, O2-to-methanol molar (O2/C) ratios, and Pt/Pd ratios on POM are examined. POM can be triggered at room temperature when using the Pt catalyst. In contrast, POM can occur for a preheating temperature no less than 100 °C once the Pd catalyst is used. On account of the cold start of POM by the Pt catalyst, a dual-catalyst bed strategy is proposed where the Pt catalyst serves as the upper layer. In the dual-catalyst bed with the equivalent amounts of the two catalysts, the maximum H2 yield is 1.61 mol (mol methanol)−1 developing at O2/C = 0.6. Reducing the Pt catalyst amount does not obviously affect the POM performance where methanol conversion is close to 100% and the H2 yield is between 1.55 and 1.57 mol (mol methanol)−1. Accordingly, depending on the prices of Pt and Pd costs, economic and flexible operation of POM for hydrogen production can be achieved from the catalyst combination strategy.

Original languageEnglish
Article number118180
JournalEnergy
Volume206
DOIs
Publication statusPublished - 2020 Sep 1

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Building and Construction
  • Pollution
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Catalyst combination strategy for hydrogen production from methanol partial oxidation'. Together they form a unique fingerprint.

Cite this