TY - JOUR
T1 - Cation Valences and Multiferroic Properties of EuTiO3 Co-Doped with Ba and Transition Metals of Co/Ni
AU - Lin, Tzu Chiao
AU - Qi, Xiaoding
N1 - Funding Information:
This work was supported by the Ministry of Science and Technology, Taiwan, under the grant numbers: MOST 110-2221-E-006-033 and MOST 111-2221-E-006-154.
Publisher Copyright:
© 2022 by the authors.
PY - 2022/10
Y1 - 2022/10
N2 - Eu1−xBaxTi1−yMyO3 (M = Co or Ni) was sintered at 1400 °C under a reduction atmosphere. X-ray photoelectron spectroscopy revealed the mixed valences of Eu2+/Eu3+ and Ti4+/Ti3+ in EuTiO3 and Eu0.7Ba0.3TiO3, as well as some oxygen vacancies required to keep the charge neutrality. The co-doping of Co2+/Ni2+ in Eu0.7Ba0.3TiO3 resulted in the disappearance of oxygen vacancies, as a result of a reduction in Ti3+ numbers and an increase in Eu3+ numbers. On the other hand, Ba2+ doping led to an increased lattice parameter due to its larger ionic size than Eu2+, whereas the Co2+/Ni2+ co-doping resulted in smaller lattice parameters because of the combined effects of ionic size and variation in the oxygen-vacancy numbers. Eu0.7Ba0.3TiO3 exhibited a clear ferroelectricity, which persisted in the Co2+/Ni2+ co-doped samples until the doping levels of y = 0.05 and 0.10, respectively. Eu0.7Ba0.3TiO3 remained to be antiferromagnetic with a reduced transition temperature of 3.1 K, but co-doping of Co2+/Ni2+ turned the samples from antiferromagnetic to ferromagnetic with transition temperatures of 2.98 K and 2.72 K, respectively. The cause for such a transition could not be explained by the larger lattice volume, oxygen vacancies and mixed valences of Eu2+/Eu3+, which were proposed in previous works. Instead, it was more likely to arise from a large asymmetric distortion of the Eu–O polyhedron introduced by the aliovalent doping, which promotes the admixture of Eu 5d and 4f states.
AB - Eu1−xBaxTi1−yMyO3 (M = Co or Ni) was sintered at 1400 °C under a reduction atmosphere. X-ray photoelectron spectroscopy revealed the mixed valences of Eu2+/Eu3+ and Ti4+/Ti3+ in EuTiO3 and Eu0.7Ba0.3TiO3, as well as some oxygen vacancies required to keep the charge neutrality. The co-doping of Co2+/Ni2+ in Eu0.7Ba0.3TiO3 resulted in the disappearance of oxygen vacancies, as a result of a reduction in Ti3+ numbers and an increase in Eu3+ numbers. On the other hand, Ba2+ doping led to an increased lattice parameter due to its larger ionic size than Eu2+, whereas the Co2+/Ni2+ co-doping resulted in smaller lattice parameters because of the combined effects of ionic size and variation in the oxygen-vacancy numbers. Eu0.7Ba0.3TiO3 exhibited a clear ferroelectricity, which persisted in the Co2+/Ni2+ co-doped samples until the doping levels of y = 0.05 and 0.10, respectively. Eu0.7Ba0.3TiO3 remained to be antiferromagnetic with a reduced transition temperature of 3.1 K, but co-doping of Co2+/Ni2+ turned the samples from antiferromagnetic to ferromagnetic with transition temperatures of 2.98 K and 2.72 K, respectively. The cause for such a transition could not be explained by the larger lattice volume, oxygen vacancies and mixed valences of Eu2+/Eu3+, which were proposed in previous works. Instead, it was more likely to arise from a large asymmetric distortion of the Eu–O polyhedron introduced by the aliovalent doping, which promotes the admixture of Eu 5d and 4f states.
UR - http://www.scopus.com/inward/record.url?scp=85139783297&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85139783297&partnerID=8YFLogxK
U2 - 10.3390/ma15196652
DO - 10.3390/ma15196652
M3 - Article
AN - SCOPUS:85139783297
SN - 1996-1944
VL - 15
JO - Materials
JF - Materials
IS - 19
M1 - 6652
ER -