TY - JOUR
T1 - Characterization of active microbes in a full-scale anaerobic fluidized bed reactor treating phenolic wastewater
AU - Chen, Chia Lung
AU - Wu, Jer Horng
AU - Tseng, I. Cheng
AU - Liang, Teh Ming
AU - Liu, Wen Tso
PY - 2009
Y1 - 2009
N2 - This study investigated the active microbial community in a full-scale granular activated carbon-anaerobic fluidized bed (GAC-AFB) reactor treating wastewater from the manufacturing of phenolic resin, using 16S rRNA-based molecular analyses. The results of cDNA from 16S rRNA revealed that Methanosaeta-related (83.9% of archaeal clones) and Syntrophorhabdaceae (formerly named Deltaproteobacteria group TA)-related (68.9% of bacterial clones) microorganisms were as the most predominant populations in the phenol-degrading GAC-AFB reactor. The high abundance of Syntrophorhabdaceae was supported by a terminal restriction fragment length polymorphism (T-RFLP) analysis, which showed that a Syntrophorhabdaceae-like fragment of 119 bp (∼80% of total fragments) was the most predominant phylotype. Furthermore, fluorescence in situ hybridization (FISH) analyses suggested that Syntrophus-and Chloroflexi-like cells were also in high abundance in the GAC biofilm. A non-layered structure of microorganisms was found in the GAC biofilm, where Methanosaeta (thick filamentous), Syntrophorhabdaceae (oval-shaped), Syntrophus (small rods) and Chloroflexi (thin-filamentous) were randomly distributed with high abundance. These findings greatly improve our understanding of the diversity and distribution of microbial populations in a full-scale mesophilic bioreactor treating an actual phenol-containing waste stream.
AB - This study investigated the active microbial community in a full-scale granular activated carbon-anaerobic fluidized bed (GAC-AFB) reactor treating wastewater from the manufacturing of phenolic resin, using 16S rRNA-based molecular analyses. The results of cDNA from 16S rRNA revealed that Methanosaeta-related (83.9% of archaeal clones) and Syntrophorhabdaceae (formerly named Deltaproteobacteria group TA)-related (68.9% of bacterial clones) microorganisms were as the most predominant populations in the phenol-degrading GAC-AFB reactor. The high abundance of Syntrophorhabdaceae was supported by a terminal restriction fragment length polymorphism (T-RFLP) analysis, which showed that a Syntrophorhabdaceae-like fragment of 119 bp (∼80% of total fragments) was the most predominant phylotype. Furthermore, fluorescence in situ hybridization (FISH) analyses suggested that Syntrophus-and Chloroflexi-like cells were also in high abundance in the GAC biofilm. A non-layered structure of microorganisms was found in the GAC biofilm, where Methanosaeta (thick filamentous), Syntrophorhabdaceae (oval-shaped), Syntrophus (small rods) and Chloroflexi (thin-filamentous) were randomly distributed with high abundance. These findings greatly improve our understanding of the diversity and distribution of microbial populations in a full-scale mesophilic bioreactor treating an actual phenol-containing waste stream.
UR - http://www.scopus.com/inward/record.url?scp=70349917803&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70349917803&partnerID=8YFLogxK
U2 - 10.1264/jsme2.ME09109
DO - 10.1264/jsme2.ME09109
M3 - Article
C2 - 21566367
AN - SCOPUS:70349917803
SN - 1342-6311
VL - 24
SP - 144
EP - 153
JO - Microbes and Environments
JF - Microbes and Environments
IS - 2
ER -