Characterizations of gas purge valves for liquid alignment and gas removal in a microfluidic chip

Han Sheng Chuang, Raviraj Thakur, Steven T. Wereley

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Two polydimethylsiloxane (PDMS) gas purge valves for excessive gas removal in general lab-on-a-chip applications are presented in this paper. Both valves are devised based on a three-layer configuration comprising a top layer for liquid channels, a membrane and a bottom layer for gas channels. The pneumatic valves work as a normal gateway for fluids when the membrane is bulged down (open state) by vacuum or pushed up (closed state) by pressure. In the closed state, the air in front of a liquid can be removed through a small notch or a permeable PDMS membrane by compressing the liquid. The purge valve with a small notch across its valve seat, termed surface-tension (ST) valve, can be operated with pressure under 11.5 kPa. The liquid is mainly retained by the surface tension resulting from the hydrophobic channel walls. In contrast, the purge valve with vacuum-filled grooves adjacent to a liquid channel, termed gas-permeation (GP) valve, can be operated at pressure above 5.5 kPa. Based on the principle of gas permeation, the excessive air can be slowly removed through the vent grooves. Detailed evaluations of both valves in a pneumatically driven microfluidic chip were conducted. Specifically, the purge valves enable users to remove gas and passively align liquids at desired locations without using sensing devices or feedback circuits. Finally, a rapid mixing reaction was successfully performed with the GP valves, showing their practicability as incorporated in a microfluidic chip.

Original languageEnglish
Article number085023
JournalJournal of Micromechanics and Microengineering
Volume22
Issue number8
DOIs
Publication statusPublished - 2012 Aug

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Characterizations of gas purge valves for liquid alignment and gas removal in a microfluidic chip'. Together they form a unique fingerprint.

  • Cite this