Charge-order-maximized momentum-dependent superconductivity

T. Kiss, T. Yokoya, A. Chainani, S. Shin, T. Hanaguri, M. Nohara, H. Takagi

Research output: Contribution to journalArticlepeer-review

191 Citations (Scopus)

Abstract

Charge ordering and superconductivity are observed in the phase diagrams of a variety of materials such as NbSe"3, layered transition-metal dichalcogenides and high-temperature copper oxide superconductors, low-dimensional organics, Ba1xKxBiO3 and so forth. Although both conventional charge-density-wave (CDW) and superconducting transitions show an energy gap in the single-particle density of states at the Fermi level (EF), their physical properties are poles apart: insulating behaviour for the CDW and zero resistivity in superconductors. Consequently, these two ground states are believed to compete with each other. Here we provide evidence for maximized superconductivity at points in momentum (k) space that are directly connected by the CDW ordering vector. Temperature-dependent angle-resolved photoemission spectroscopy of 2H-NbSe2 across the CDW and superconducting transitions (TCDW33K and Tc≤7.2K, respectively) shows CDW-induced spectral-weight depletion at the same Fermi-surface-crossing k points, which evolve into the largest superconducting gaps. These k points also show the highest electron-phonon coupling and lowest Fermi velocities. Our results demonstrate that charge order can boost superconductivity in an electron-phonon coupled system, in direct contrast to the prevailing view that it only competes with superconductivity.

Original languageEnglish
Pages (from-to)720-725
Number of pages6
JournalNature Physics
Volume3
Issue number10
DOIs
Publication statusPublished - 2007 Oct

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Charge-order-maximized momentum-dependent superconductivity'. Together they form a unique fingerprint.

Cite this