Chemical assembly of zinc oxide aggregated anodes on plastic substrates at room temperature for flexible dye-sensitized solar cells

Shou Yen Lin, Jih Jen Wu

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

A notable efficiency of 5.16% is achieved in the flexible dye-sensitized solar cell (DSSC) using a ZnO aggregated anode with a light scattering layer facilely fabricated on the indium tin oxide (ITO) coated-polyethylene terephthalate (PET) substrate. The ZnO aggregates composed of ZnO nanoparticles (NPs) and room-temperature (RT) grown nanostructures are chemically assembled on the ITO-PET substrate by the RT chemical treatment of the drop-cast ZnO NP layer on the substrate. The enhanced light scattering ability and superior electron transport property are measured in the ZnO aggregated matrix anode. A ZnO particle layer is further drop-cast on the ZnO aggregated matrix anode followed by another RT chemical treatment to form the light scattering layer. Dynamics of electron transport and recombination measurements indicate that an efficient electron collection is performed in the flexible ZnO anode fabricated free of high-temperature treatment and mechanical compression. Moreover, efficient photovoltaic performances are also monitored in both concave-downward and concave-upward bending configurations of the ZnO DSSCs, demonstrating the good flexibility of the ZnO nanostructured anodes.

Original languageEnglish
Pages (from-to)61-67
Number of pages7
JournalElectrochimica Acta
Volume152
DOIs
Publication statusPublished - 2015 Jan 10

All Science Journal Classification (ASJC) codes

  • General Chemical Engineering
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Chemical assembly of zinc oxide aggregated anodes on plastic substrates at room temperature for flexible dye-sensitized solar cells'. Together they form a unique fingerprint.

Cite this