Abstract
Symmetry breaking is a characteristic to determine which branch of a bifurcation system follows upon crossing a critical point. Specifically, in spin-orbit torque (SOT) devices, a fundamental question arises: How can the symmetry of the perpendicular magnetic moment be broken by the in-plane spin polarization? Here, we show that the chiral symmetry breaking by the antisymmetric Dzyaloshinskii-Moriya interaction (DMI) can induce the deterministic SOT switching of the perpendicular magnetization. By introducing a gradient of saturation magnetization or magnetic anisotropy, the dynamic noncollinear spin textures are formed under the current-driven SOT, and thus, the chiral symmetry of these dynamic spin textures is broken by the DMI, resulting in the deterministic magnetization switching. We introduce a strategy to induce an out-of-plane (z) gradient of magnetic properties as a practical solution for the wafer-scale manufacture of SOT devices.
Original language | English |
---|---|
Pages (from-to) | 515-521 |
Number of pages | 7 |
Journal | Nano letters |
Volume | 21 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2021 Jan 13 |
All Science Journal Classification (ASJC) codes
- Bioengineering
- General Chemistry
- General Materials Science
- Condensed Matter Physics
- Mechanical Engineering