Chitosan microneedle patches for sustained transdermal delivery of macromolecules

Mei Chin Chen, Ming Hung Ling, Kuan Ying Lai, Esar Pramudityo

Research output: Contribution to journalArticlepeer-review

194 Citations (Scopus)

Abstract

This paper introduces a chitosan microneedle patch for efficient and sustained transdermal delivery of hydrophilic macromolecules. Chitosan microneedles have sufficient mechanical strength to be inserted in vitro into porcine skin at approximately 250 μm in depth and in vivo into rat skin at approximately 200 μm in depth. Bovine serum albumin (BSA, MW = 66.5 kDa) was used as a model protein to explore the potential use of chitosan microneedles as a transdermal delivery device for protein drugs. In vitro drug release showed that chitosan microneedles can provide a sustained release of BSA for at least 8 days (approximately 95% of drugs released in 8 days). When the Alexa Fluor 488-labeled BSA (Alexa 488-BSA)-loaded microneedles were applied to the rat skin in vivo, confocal microscopic images showed that BSA can gradually diffuse from the puncture sites to the dermal layer and the fluorescence of Alexa 488-BSA can be observed at the depth of 300 μm. In addition, encapsulation of BSA within the microneedle matrix did not alter the secondary structure of BSA, indicating that the gentle nature of the fabrication process allowed for encapsulation of fragile biomolecules. These results suggested that the developed chitosan microneedles may serve as a promising device for transdermal delivery of macromolecules in a sustained manner.

Original languageEnglish
Pages (from-to)4022-4031
Number of pages10
JournalBiomacromolecules
Volume13
Issue number12
DOIs
Publication statusPublished - 2012 Dec 10

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Biomaterials
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Chitosan microneedle patches for sustained transdermal delivery of macromolecules'. Together they form a unique fingerprint.

Cite this