Abstract
Magnetic stimulation of neural tissue is an attractive technology because neural excitation may be affected without requiring implantation of electrodes. Pulsed discharge circuits are typically implemented for clinical magnetic stimulation systems. However, pulsed discharge systems can confound in-vitro experimentation. As an alternative to pulsed discharge circuits, we present a circuit to deliver asymmetric current pulses forgeneration of the magnetic field. We scaled the system down by using ferrite cores for the excitation coil. The scaled system allows observation using electrophysiological techniques and preparations not commonly used for investigation of magnetic stimulation. The design was refined using a comprehensive set of design equations. Circuit modeling and simulation demonstrate that the proposed system is effective for stimulating neural tissue with electric-field gradients generated by time-varying magnetic fields. System performance is verified through electrical test. Copyright copy; 2009 IEEE.
Original language | English |
---|---|
Pages (from-to) | 321-331 |
Number of pages | 11 |
Journal | IEEE transactions on biomedical circuits and systems |
Volume | 3 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2009 Oct |
All Science Journal Classification (ASJC) codes
- Biomedical Engineering
- Electrical and Electronic Engineering