CjrABC-senB hinders survival of extraintestinal pathogenic E. coli in the bloodstream through triggering complement-mediated killing

Wen Chun Huang, Yi Jyun Liao, Masayuki Hashimoto, Kuan Fu Chen, Chishih Chu, Po Chuen Hsu, Shuying Wang, Ching Hao Teng

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


Background: Extraintestinal pathogenic E. coli (ExPEC) is a common gram-negative organism causing various infections, including urinary tract infections (UTIs), bacteremia, and neonatal meningitis. The cjrABC-senB gene cluster of E. coli contributes to ExPEC virulence in the mouse model of UTIs. Consistently, the distribution of cjrABC-senB is epidemiologically associated with human UTIs caused by E. coli. cjrABC-senB, which has previously been proposed to encode an iron uptake system, may facilitate ExPEC survival in the iron availability-restricted urinary tract. Given that the bloodstream is also an iron limited environment to invading bacteria, the pathogenic role of cjrABC-senB in ExPEC bacteremia, however, remains to be investigated. Methods: The ability of ExPEC RS218 strains with and without cjrABC-senB to survive in the mouse bloodstream and human serum was evaluated. Subsequently, the role of this gene cluster in the ExPEC interaction with the complement system was evaluated. Finally, the distribution of cjrABC-senB in human clinical E. coli isolates was determined by PCR. The frequency of cjrABC-senB in bacteremia isolates that were not associated with UTIs (non-UTI bacteremia isolates) was compared with that in UTI-associated isolates and fecal isolates. Results: Expression of cjrABC-senB attenuated the survival of RS218 in the mouse bloodstream and human serum. The cjrABC-senB-harboring strains triggered enhanced classical- and alternative-complement pathway activation and became more vulnerable to complement-mediated killing in serum. cjrA was identified as the major gene responsible for the attenuated serum survival. Expressing cjrABC-senB and cjrA increased bacterial susceptibility to detergent and induced periplasmic protein leakage, suggesting that the expression of these genes compromises the integrity of the outer membrane of ExPEC. In addition, the frequency of cjrABC-senB in non-UTI bacteremia isolates was significantly lower than that in UTI-associated isolates, while the frequencies in non-UTI bacteremia isolates and fecal isolates showed no significant difference. Consistently, this epidemiological investigation suggests that cjrABC-senB does not contribute to E. coli bacteremia in humans. Conclusion: The contribution of cjrABC-senB to the pathogenesis of ExPEC is niche dependent and contradictory because the genes facilitate ExPEC UTIs but hinder bacteremia. The contradictory niche-dependent characteristic may benefit the development of novel strategies against E. coli-caused infections.

Original languageEnglish
Article number86
JournalJournal of biomedical science
Issue number1
Publication statusPublished - 2020 Aug 6

All Science Journal Classification (ASJC) codes

  • Endocrinology, Diabetes and Metabolism
  • Molecular Biology
  • Clinical Biochemistry
  • Cell Biology
  • Biochemistry, medical
  • Pharmacology (medical)


Dive into the research topics of 'CjrABC-senB hinders survival of extraintestinal pathogenic E. coli in the bloodstream through triggering complement-mediated killing'. Together they form a unique fingerprint.

Cite this