Classification of Driver's Cognitive Responses From EEG Analysis

Sheng Fu Liang, Chin Teng Lin, Ruei Cheng Wu, Teng Yi Huang, Wen Hung Chao

Research output: Contribution to journalConference articlepeer-review

4 Citations (Scopus)

Abstract

the past years, the growing number of traffic fatalities has become an important issue in public security. In this paper, we develop a quantitative analysis for ongoing assessment of cognitive response by investigating the neurobiological brain dynamics in traffic-light experiments. A single-trial event-related-potential (ERP)-based fuzzy neural network (FNN) is applied to recognize different brain potentials stimulated by red/green/yellow traffic-light events. The system consists of a dynamic virtual-reality (VR)-based motion simulation platform, EEG signal detection and analysis units, and FNN-based classifier. The independent component analysis (ICA) algorithms are used to obtain noise-free ERP signals from the multi-channel EEG signals. A novel temporal filter is also proposed to solve time-alignment problems of ERP features and principle component analysis (PCA) is used to reduce dimension of features, which were then fed into a FNN classifier. Experimental results demonstrate the feasibility of detecting and analyzing multiple streams of ERP signals that organize operators' cognitive responses to task events. Comparisons of three kinds of linear and nonlinear classifiers show that our proposed FNN-based classifier can achieve a satisfactory and superior recognition rate (85%). The classification results can be further transformed as the control/biofeedback signals of intelligent driving systems.

Original languageEnglish
Article number1464548
Pages (from-to)156-159
Number of pages4
JournalProceedings - IEEE International Symposium on Circuits and Systems
DOIs
Publication statusPublished - 2005 Dec 1
EventIEEE International Symposium on Circuits and Systems 2005, ISCAS 2005 - Kobe, Japan
Duration: 2005 May 232005 May 26

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Classification of Driver's Cognitive Responses From EEG Analysis'. Together they form a unique fingerprint.

Cite this