Coalescence, melting, and mechanical characteristics of carbon nanotube junctions

Ping Chi Tsai, Yeau-Ren Jeng, Te Hua Fang

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)


This study employs classical molecular dynamics (MD) simulations to investigate the formation of single-walled carbon nanotube (SWCNT) T junctions via the melting and coalescence of two individual nanotubes. The simulations focus primarily on the synthesized multiterminals of (5, 5)-(9, 0)-(5, 5) and (5, 5)-(5, 5)-(5, 5) T junctions since these particular T junctions represent two extreme cases. The numerical results indicate that most of the cap-to-wall coalescence pathways identified for the nanotubes consist exclusively of Stone-Wales bond rotations. The thermal stability and melting behavior of the two T junctions are studied. It is found that for thermal treatment at high temperature, the (5, 5)-(9, 0)-(5, 5) T junction is more thermally stable than its (5, 5)-(5, 5)-(5, 5) counterpart since its structural dislocations and topological defects accelerate the onset of melting. The effects of the nanotube diameter and chirality on the mechanical responses of the T junctions under tensile and bending loads are also studied. The bending tests reveal an unexpected nanoplasticity mechanism in the T junction subjected to large bending deformation. This nanoplasticity effect causes the bonding geometry to transform from a graphitic (s p2) structure to a localized diamondlike (s p3) structure.

Original languageEnglish
Article number045406
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number4
Publication statusPublished - 2006 Jul 20

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Coalescence, melting, and mechanical characteristics of carbon nanotube junctions'. Together they form a unique fingerprint.

Cite this