TY - JOUR
T1 - Cognitive network interference
AU - Rabbachin, Alberto
AU - Quek, Tony Q.S.
AU - Shin, Hyundong
AU - Win, Moe Z.
N1 - Funding Information:
Manuscript received 1 December 2009; revised 30 May 2010. This research was supported, in part, by the MIT Institute for Soldier Nanotechnologies, the Office of Naval Research Presidential Early Career Award for Scientists and Engineers (PECASE) N00014-09-1-0435, and the National Science Foundation under grant ECCS-0901034, and the National Research Foundation of Korea (KRF) grant funded by the Korea government (MEST) (No. 2010-0014773).
PY - 2011/2
Y1 - 2011/2
N2 - Opportunistic spectrum access creates the opening of under-utilized portions of the licensed spectrum for reuse, provided that the transmissions of secondary radios do not cause harmful interference to primary users. Such a system would require secondary users to be cognitivethey must accurately detect and rapidly react to varying spectrum usage. Therefore, it is important to characterize the effect of cognitive network interference due to such secondary spectrum reuse. In this paper, we propose a new statistical model for aggregate interference of a cognitive network, which accounts for the sensing procedure, secondary spatial reuse protocol, and environment-dependent conditions such as path loss, shadowing, and channel fading. We first derive the characteristic function and cumulants of the cognitive network interference at a primary user. Using the theory of truncated-stable distributions, we then develop the statistical model for the cognitive network interference. We further extend this model to include the effect of power control and demonstrate the use of our model in evaluating the system performance of cognitive networks. Numerical results show the effectiveness of our model for capturing the statistical behavior of the cognitive network interference. This work provides essential understanding of interference for successful deployment of future cognitive networks.
AB - Opportunistic spectrum access creates the opening of under-utilized portions of the licensed spectrum for reuse, provided that the transmissions of secondary radios do not cause harmful interference to primary users. Such a system would require secondary users to be cognitivethey must accurately detect and rapidly react to varying spectrum usage. Therefore, it is important to characterize the effect of cognitive network interference due to such secondary spectrum reuse. In this paper, we propose a new statistical model for aggregate interference of a cognitive network, which accounts for the sensing procedure, secondary spatial reuse protocol, and environment-dependent conditions such as path loss, shadowing, and channel fading. We first derive the characteristic function and cumulants of the cognitive network interference at a primary user. Using the theory of truncated-stable distributions, we then develop the statistical model for the cognitive network interference. We further extend this model to include the effect of power control and demonstrate the use of our model in evaluating the system performance of cognitive networks. Numerical results show the effectiveness of our model for capturing the statistical behavior of the cognitive network interference. This work provides essential understanding of interference for successful deployment of future cognitive networks.
UR - http://www.scopus.com/inward/record.url?scp=79251614552&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79251614552&partnerID=8YFLogxK
U2 - 10.1109/JSAC.2011.110219
DO - 10.1109/JSAC.2011.110219
M3 - Article
AN - SCOPUS:79251614552
SN - 0733-8716
VL - 29
SP - 480
EP - 493
JO - IEEE Journal on Selected Areas in Communications
JF - IEEE Journal on Selected Areas in Communications
IS - 2
M1 - 5701700
ER -